Sains Malaysiana 45(4)(2016): 589–594

Bacillus thuringiensis Entomotoxicity Activity in Wastewater Sludge-Culture Medium towards Bactrocera dorsalis and their Histopathological Assessment

(Aktiviti Entomotoksisiti Bacillus thuringiensis dalam Medium Air Sisa Kultur Enap Cemar

ke arah Bactrocera dorsalis dan Penilaian Histopatologinya)

 

MONA FATIN SYAZWANEE M.G., NOORMASSHELA U.A., NOR AZWADY A.A., RUSEA G. & MUSKHAZLI M.*

 

Department of Biology, Faculty of Science, Universiti Putra Malaysia, 43400 Serdang, Selangor Darul Ehsan, Malaysia

 

Received: 1 April 2014/Accepted: 30 October 2015

 

ABSTRACT

This study investigates the production of biopesticide based on Bacillus thuringiensis activity in culture media supplemented with semi-solid wastewater sludge as one of the raw ingredient. A series of testing using mixture of sludge and source of protein as B. thuringiensis growth media were carried out and selection of media was based on viable spore count. The entomotoxicity test of B. thuringiensis was carried out against larvae of fruit fly using diet incorporation method. Further impact of entomotoxicity was observed based on histology deformities on columnar epithelial cell and goblet cell of the midgut. A mixture of sludge with 60% wheat bran produced up to 1.64 × 1010 CFU/mL of viable spore count within 10 days of incubation. Based on entomotoxicity test, incorporation of 12 mL of semi-solid wastewater sludge-culture media into fruit fly artificial diet caused the highest fruit fly mortality at 64.8%. The value of semi-solid wastewater sludge-culture media concentration for LC50 was determined at 8.43%. Effect of entomotoxicity can be seen started from 3rd instar larvae where histopathological studies showed that up to 10% of columnar epithelial cells in the intestine were swollen and severe reduction of goblet cell’s size. Thus, it decreases the survivality of the fruit fly larvae. The present study indicated that semi-solid wastewater sludge has the potential to enhance B. thuringiensis entomotoxicity activity.

 

Keywords: Diet; goblet cell; histopathology; lumen; semi solid; wheat bran

 

ABSTRAK

Penyelidikan ini mengkaji pengeluaran biopestisid berdasarkan aktiviti Bacillus thuringiensis dalam kultur media yang ditambah dengan enap cemar air sisa separa pepejal sebagai salah satu bahan mentah. Siri ujian menggunakan campuran enap cemar dan sumber protein seperti media pertumbuhan B. thuringiensis telah dijalankan dan pemilihan media adalah berdasarkan kiraan spora berdaya maju. Ujian entomotoksisiti B. thuringiensis telah dijalankan terhadap larva lalat buah menggunakan kaedah penggabungan diet. Satu kesan daripada entomotoksisiti diperhatikan berdasarkan histologi kecacatan sel epitelium turus dan sel goblet daripada perut tengah ini. Campuran enap cemar dengan bran gandum 60% dihasilkan sehingga 1.64 × 1010 CFU/mL kiraan spora berdaya maju dalam tempoh 10 hari dari inkubator. Berdasarkan ujian entomotoksisiti, penubuhan 12 mL media kultur air sisa enap cemar separa pepejal ke dalam diet tiruan lalat buah disebabkan kematian lalat buah yang tertinggi sebanyak 64.8%. Nilai kepekatan kultur media separa pepejal buangan enap cemar PL50 telah ditentukan pada 8.43%. Kesan entomotoksisiti boleh dilihat bermula daripada tiga instar larva dengan kajian histopatologi menunjukkan bahawa sehingga 10% daripada sel-sel epitelium turus dalam usus telah bengkak dan pengurangan saiz sel goblet yang ketara. Oleh itu, ia mengurangkan kemandirian untuk larva lalat buah. Kajian ini menunjukkan bahawa air sisa enap cemar separa pepejal mempunyai potensi untuk meningkatkan aktiviti entomotoksisiti B. thuringiensis.

 

 

Kata kunci: Dedak gandum; diet; histopatologi; lumen; sel goblet; separa pepejal

REFERENCES

Alberola, T.M., Aptosoglou, S., Arsenakis, M., Bel, Y., Delrio, G., Ellar, D.J., Ferre, J., Granero, F., D. M. Guttmann, D.M., Koliais, S., Martınez-Sebastian, M.J., Prota, R., Rubino, S., Satta, A., Scarpellini, G., Sivropoulou, A. & Vasara, E. 1999. Insecticidal activity of strains of Bacillus thuringiensis on larvae and adults of Bactrocera oleae Gmelin (Dipt. Tephritidae). Journal of Invertebrate Pathology 74: 127-136.

Anderson, R.K.I. & Jayaraman, K. 2013. Influence of carbon and nitrogen sources on the growth and sporulation of Bacillus thuringiensis var Galleriae for biopesticide production. Chemistry Biochemistry Engineering 17: 225-231.

Brar, S.K., Verma, M., Tyagi, R.D., Valero, J.R. & Surampalli, R.Y. 2006. Recent advances in downstream processing and formulations of Bacillus thuringiensis based biopesticides. Process Biochemistry 41: 323-342.

Brar, S.K., Verma, M., Tyagi, R.D., Valero, J.R. & Surampalli, R.Y. 2005. Sludge based Bacillus thuringiensis biopesticides: Viscoscity impacts. Water Research 39: 3001-3011.

Carlberg, G. 1986. Bacillus thuringiensis and microbial control of flies. MIRCEN Journal 2: 267-274.

Clesceri, L.S., Greeberg, A.E. & Eaton A.D. 1999. Standard Methods for Examination of water and Wastewater. 20th ed. Washington D.C, United States of America: APHA American Public Health Association.

Desneux, N., Decourtye, A. & Delpuech, J.M. 2006. The sublethal effects of pesticides on beneficial arthropods. The Annual Review of Entomology 52: 81-106.

Devi, P.S.V., Ravinder, T. & Jaidev, C. 2005. Cost-effective production of Bacillus thuringiensis by solid-state fermentation. Journal of Invertebrate Pathology 88: 163-168.

Glare, T., Caradus, J., Gelernter, W., Jackson, T., Keyhani, N., Kohl, J., Marrone, P., Morin, L. & Stewart, A. 2012. Have biopesticides come an age? Biotechnology 30(5): 250-258.

Gupta, S. & Dikshit, A.K. 2010. Biopesticides: An ecofriendly approach for pest control. Journal of Biopesticides 3: 186- 188.

Gringorten, J.L. 2001. Ion balance in the lepidopteran midgut and insecticidal action of Bacillus thuringiensis. In Biochemical Sites of Insecticide Action and Resistance edited by Ishaaya. I. Heidelberg: Springer. pp. 167-207.

Karamanlidou, G., Lambropoulos, A.F., Koliais, S.I., Manousis, T., Ellar, D. & Kastritsis, C. 1991. Toxicity of Bacillus thuringiensis to laboratory populations of the olive fruit fruit fly (Dacus oleae). Applied Environmental Microbiology 57: 2277-2282.

Keshavarzi, M., Salimi, H. & Mirzanamadi, F. 2005. Biochemical and physical requirements of Bacillus thuringiensis subsp. kurstaki for high biomass yield production. Journal of Agriculture Science Technology 7: 41-47.

Lachhab, K., Tyagi, R.D. & Valero, J.R. 2001. Production of Bacillus thuringiensis biopesticides using wastewater sludge as a raw material: Effect of inoculums and sludge solids concentration. Process Biochemistry 37: 197-208.

Lane, N.J., Harrison, J.B. & Lee, W.M. 1989. Changes in microvilli and Golgi-associated membranes of lepidopteran cells induced by an insecticidally active bacterial δ-endotoxin. Journal of Cell Science 93: 337-347.

Li, L. & Yu, Z. 2012. Genetically modified Bacillus thuringiensis biopesticides. In Bacillus thuringiensis Biotechnology. Netherlands: Springer. pp. 231-257.

McClintock, J.T., Schaffer, C.R. & Sjobland, R.D. 1995. A comparative review of the mammalian toxicity of Bacillus thuringiensis-based pesticides. Pesticide Science 45: 95-105.

Nu-Hung, C., Lin, T. & Lee, W.Y. 2000. Morphology and ultrstructure of the alimentary canal of the oriental fruit fly, Bactrocera dorsalis (Hendel) (Diptera:Tephritidae)(2): the structure of the midgut. Zoology Studies 39: 387-394.

Pandey, S., Joshi, B.D. & Tiwari, L.D. 2009. Histopathological changes in the midgut of Spodoptera litura larvae on ingestion of Bacillus thuringiensis delta-endotoxin. Archives of Phytopathology and Plant Protection 42: 376-383.

Pimentel, D. 2009. Environment and economic costs of the application of pesticides primarily in United States. Environment, Development and Sustainability 7: 229-252.

Poopathi, S. & Archana, B. 2012. Optimization of medium composition for the production of mosquitocidal toxins from Bacillus thuringiensis subsp. israelensis. Indian Journal of Experimental Biology 50: 65-71.

Ryerse, J.S., Beck, J.R. & Lavrik, P.B. 1990. Light microscope lmmunolocation of Bacillus thuringiensis kurstaki S-endotoxin in the midgut and malpighian tubules of the tobacco budworm, Heliothis virescens. Journal of Invertebrate Pathology 56: 86-90.

Salama, H.S., Foda, M.S., Dulmage, H.T. & El-Sharaby, A. 1983. Novel fermentation media for production of delta-endotoxins from Bacillus thuringiensis. Journal of Invertebrate Pathology 41: 8-19.

Santos, K.B., Neves, P., Meneguim, A.M., Santos, R.B., Santos, W.J., Boas, G.V., Dumas, V., Martins, E., Praça, L.B., Queiroz, P., Berry, C. & Monnerat, R. 2009. Selection and characterization of the Bacillus thuringiensis strains toxic to Spodoptera eridania (Cramer), Spodoptera cosmioides (Walker)and Spodoptera frugiperda (Smith) (Lepidoptera: Noctuidae). Biological Control 50: 157-163.

Tirado-Montiel, M.L., Tyagi, R.D. & Valero, J.R. 2001. Wastewater treatment sludge as a raw material for the production of Bacillus thuringiensis based biopesticides. Water Research 35: 3807-3816.

Whalon, M.E. & Wingered, B.A. 2003. Bt: Mode of action and use. Archives of Insect Biochemistry and Physiology 54: 200-211.

Vidyarthi, A.S., Tyagi, R.D., Valéro, J.R. & Surampalli, R.Y. 2002. Studies on the production of B. thuringiensis based biopesticides using wastewater sludge as raw material. Water Research 36: 4850-4860.

Vitcosque, G.L., Fonseca, R.F., Rodriguez-Zuniga, U.F., Neto, V.B., Couri, S. & Farinas, C.S. 2012. Production of biomass-degrading multi-enzyme complexes under solid-state fermentation of soybean meal using a bioreactor. Enzyme Research 2012: Article ID. 248983.

Vu, K.D., Tyagi, R.D., Valero, J.R. & Surampalli, R.Y. 2009. Impact of different pH control agents on biopesticides activity of Bacillus thuringiensis during the fermentation of starch industry wastewater. Bioprocess Biocatalyst Engineering 32: 511-519.

Yezza, A., Tyagi, R.D., Valero, J.R. & Surampalli, R.Y. 2006. Bioconversion of industrial wastewater and wastewater sludge in Bacillus thuringiensis based biopesticides in pilot fermentor. Bioresource Technology 97: 1850-1857.

 

 

*Corresponding author; email: muskhazli@upm.edu.my

 

 

 

previous