Sains Malaysiana 45(4)(2016): 589–594
Bacillus thuringiensis
Entomotoxicity
Activity in Wastewater Sludge-Culture Medium towards Bactrocera
dorsalis and their Histopathological Assessment
(Aktiviti Entomotoksisiti
Bacillus thuringiensis dalam Medium Air Sisa Kultur Enap
Cemar
ke arah Bactrocera
dorsalis dan Penilaian Histopatologinya)
MONA
FATIN
SYAZWANEE
M.G.,
NOORMASSHELA
U.A.,
NOR
AZWADY
A.A.,
RUSEA
G.
& MUSKHAZLI M.*
Department
of Biology, Faculty of Science, Universiti Putra Malaysia, 43400
Serdang, Selangor Darul Ehsan, Malaysia
Received:
1 April 2014/Accepted: 30 October 2015
ABSTRACT
This study investigates
the production of biopesticide based on Bacillus thuringiensis activity in culture media supplemented
with semi-solid wastewater sludge as one of the raw ingredient.
A series of testing using mixture of sludge and source of protein
as B. thuringiensis growth media were carried out and selection
of media was based on viable spore count. The entomotoxicity test
of B. thuringiensis was carried out against larvae of fruit
fly using diet incorporation method. Further impact of entomotoxicity
was observed based on histology deformities on columnar epithelial
cell and goblet cell of the midgut. A mixture of sludge with 60%
wheat bran produced up to 1.64 × 1010 CFU/mL
of viable spore count within 10 days of incubation. Based on entomotoxicity
test, incorporation of 12 mL of semi-solid wastewater sludge-culture
media into fruit fly artificial diet caused the highest fruit fly
mortality at 64.8%. The value of semi-solid wastewater sludge-culture
media concentration for LC50 was
determined at 8.43%. Effect of entomotoxicity can be seen started
from 3rd instar larvae where histopathological studies showed that
up to 10% of columnar epithelial cells in the intestine were swollen
and severe reduction of goblet cell’s size. Thus, it decreases the
survivality of the fruit fly larvae. The present study indicated
that semi-solid wastewater sludge has the potential to enhance B.
thuringiensis entomotoxicity activity.
Keywords: Diet; goblet
cell; histopathology; lumen; semi solid; wheat bran
ABSTRAK
Penyelidikan
ini mengkaji pengeluaran biopestisid berdasarkan aktiviti Bacillus
thuringiensis dalam kultur media yang ditambah dengan enap cemar
air sisa separa pepejal sebagai salah satu bahan mentah. Siri ujian
menggunakan campuran enap cemar dan sumber protein seperti media
pertumbuhan B. thuringiensis telah dijalankan dan pemilihan
media adalah berdasarkan kiraan spora berdaya maju. Ujian entomotoksisiti
B. thuringiensis telah dijalankan terhadap larva lalat buah
menggunakan kaedah penggabungan diet. Satu kesan daripada entomotoksisiti
diperhatikan berdasarkan histologi kecacatan sel epitelium turus
dan sel goblet daripada perut tengah ini. Campuran enap cemar dengan
bran gandum 60% dihasilkan sehingga 1.64 × 1010 CFU/mL
kiraan spora berdaya maju dalam tempoh 10 hari dari inkubator. Berdasarkan
ujian entomotoksisiti, penubuhan 12 mL media kultur air sisa enap
cemar separa pepejal ke dalam diet tiruan lalat buah disebabkan
kematian lalat buah yang tertinggi sebanyak 64.8%. Nilai kepekatan
kultur media separa pepejal buangan enap cemar PL50 telah
ditentukan pada 8.43%. Kesan entomotoksisiti boleh dilihat bermula
daripada tiga instar larva dengan kajian histopatologi menunjukkan
bahawa sehingga 10% daripada sel-sel epitelium turus dalam usus
telah bengkak dan pengurangan saiz sel goblet yang ketara. Oleh
itu, ia mengurangkan kemandirian untuk larva lalat buah. Kajian
ini menunjukkan bahawa air sisa enap cemar separa pepejal mempunyai
potensi untuk meningkatkan aktiviti entomotoksisiti B. thuringiensis.
Kata kunci: Dedak gandum; diet; histopatologi; lumen; sel goblet;
separa pepejal
REFERENCES
Alberola, T.M., Aptosoglou, S., Arsenakis, M., Bel, Y., Delrio, G.,
Ellar, D.J., Ferre, J., Granero, F., D. M. Guttmann, D.M., Koliais,
S., Martınez-Sebastian, M.J., Prota, R., Rubino, S., Satta,
A., Scarpellini, G., Sivropoulou, A. & Vasara, E. 1999. Insecticidal
activity of strains of Bacillus thuringiensis on larvae and
adults of Bactrocera oleae Gmelin (Dipt. Tephritidae). Journal
of Invertebrate Pathology 74: 127-136.
Anderson, R.K.I. & Jayaraman, K. 2013. Influence of carbon and
nitrogen sources on the growth and sporulation of Bacillus thuringiensis
var Galleriae for biopesticide production. Chemistry
Biochemistry Engineering 17: 225-231.
Brar, S.K., Verma, M., Tyagi, R.D., Valero, J.R. & Surampalli,
R.Y. 2006. Recent advances in downstream processing and formulations
of Bacillus thuringiensis based biopesticides. Process
Biochemistry 41: 323-342.
Brar, S.K., Verma, M., Tyagi, R.D., Valero, J.R. & Surampalli,
R.Y. 2005. Sludge based Bacillus thuringiensis biopesticides:
Viscoscity impacts. Water Research 39: 3001-3011.
Carlberg,
G. 1986. Bacillus thuringiensis and microbial control of
flies. MIRCEN Journal 2: 267-274.
Clesceri, L.S., Greeberg,
A.E. & Eaton A.D. 1999. Standard Methods for Examination
of water and Wastewater. 20th ed. Washington D.C, United States
of America: APHA American Public Health Association.
Desneux,
N., Decourtye, A. & Delpuech, J.M. 2006. The sublethal effects
of pesticides on beneficial arthropods. The Annual Review of
Entomology 52: 81-106.
Devi,
P.S.V., Ravinder, T. & Jaidev, C. 2005. Cost-effective production
of Bacillus thuringiensis by solid-state fermentation. Journal
of Invertebrate Pathology 88: 163-168.
Glare,
T., Caradus, J., Gelernter, W., Jackson, T., Keyhani, N., Kohl,
J., Marrone, P., Morin, L. & Stewart, A. 2012. Have biopesticides
come an age? Biotechnology 30(5): 250-258.
Gupta,
S. & Dikshit, A.K. 2010. Biopesticides: An ecofriendly approach
for pest control. Journal of Biopesticides 3: 186- 188.
Gringorten,
J.L. 2001. Ion balance in the lepidopteran midgut and insecticidal
action of Bacillus thuringiensis. In Biochemical Sites
of Insecticide Action and Resistance edited by Ishaaya. I. Heidelberg:
Springer. pp. 167-207.
Karamanlidou,
G., Lambropoulos, A.F., Koliais, S.I., Manousis, T., Ellar, D. &
Kastritsis, C. 1991. Toxicity of Bacillus thuringiensis to
laboratory populations of the olive fruit fruit fly (Dacus oleae).
Applied Environmental Microbiology 57: 2277-2282.
Keshavarzi,
M., Salimi, H. & Mirzanamadi, F. 2005. Biochemical and physical
requirements of Bacillus thuringiensis subsp. kurstaki
for high biomass yield production. Journal of Agriculture
Science Technology 7: 41-47.
Lachhab,
K., Tyagi, R.D. & Valero, J.R. 2001. Production of Bacillus
thuringiensis biopesticides using wastewater sludge as a raw
material: Effect of inoculums and sludge solids concentration. Process
Biochemistry 37: 197-208.
Lane,
N.J., Harrison, J.B. & Lee, W.M. 1989. Changes in microvilli
and Golgi-associated membranes of lepidopteran cells induced by
an insecticidally active bacterial δ-endotoxin. Journal
of Cell Science 93: 337-347.
Li,
L. & Yu, Z. 2012. Genetically modified Bacillus thuringiensis
biopesticides. In Bacillus thuringiensis Biotechnology. Netherlands:
Springer. pp. 231-257.
McClintock,
J.T., Schaffer, C.R. & Sjobland, R.D. 1995. A comparative review
of the mammalian toxicity of Bacillus thuringiensis-based
pesticides. Pesticide Science 45: 95-105.
Nu-Hung,
C., Lin, T. & Lee, W.Y. 2000. Morphology and ultrstructure of
the alimentary canal of the oriental fruit fly, Bactrocera dorsalis
(Hendel) (Diptera:Tephritidae)(2): the structure of the midgut.
Zoology Studies 39: 387-394.
Pandey,
S., Joshi, B.D. & Tiwari, L.D. 2009. Histopathological changes
in the midgut of Spodoptera litura larvae on ingestion of Bacillus
thuringiensis delta-endotoxin. Archives of Phytopathology
and Plant Protection 42: 376-383.
Pimentel,
D. 2009. Environment and economic costs of the application of pesticides
primarily in United States. Environment, Development and Sustainability
7: 229-252.
Poopathi,
S. & Archana, B. 2012. Optimization of medium composition for
the production of mosquitocidal toxins from Bacillus thuringiensis
subsp. israelensis. Indian Journal of Experimental
Biology 50: 65-71.
Ryerse,
J.S., Beck, J.R. & Lavrik, P.B. 1990. Light microscope lmmunolocation
of Bacillus thuringiensis kurstaki S-endotoxin in the midgut
and malpighian tubules of the tobacco budworm, Heliothis virescens.
Journal of Invertebrate Pathology 56: 86-90.
Salama,
H.S., Foda, M.S., Dulmage, H.T. & El-Sharaby, A. 1983. Novel
fermentation media for production of delta-endotoxins from Bacillus
thuringiensis. Journal of Invertebrate Pathology 41: 8-19.
Santos,
K.B., Neves, P., Meneguim, A.M., Santos, R.B., Santos, W.J., Boas,
G.V., Dumas, V., Martins, E., Praça, L.B., Queiroz, P., Berry, C.
& Monnerat, R. 2009. Selection and characterization of the Bacillus
thuringiensis strains toxic to Spodoptera eridania (Cramer),
Spodoptera cosmioides (Walker)and Spodoptera frugiperda
(Smith) (Lepidoptera: Noctuidae). Biological Control 50:
157-163.
Tirado-Montiel,
M.L., Tyagi, R.D. & Valero, J.R. 2001. Wastewater treatment
sludge as a raw material for the production of Bacillus thuringiensis
based biopesticides. Water Research 35: 3807-3816.
Whalon,
M.E. & Wingered, B.A. 2003. Bt: Mode of action and use. Archives
of Insect Biochemistry and Physiology 54: 200-211.
Vidyarthi,
A.S., Tyagi, R.D., Valéro, J.R. & Surampalli, R.Y. 2002. Studies
on the production of B. thuringiensis based biopesticides
using wastewater sludge as raw material. Water Research 36:
4850-4860.
Vitcosque,
G.L., Fonseca, R.F., Rodriguez-Zuniga, U.F., Neto, V.B., Couri,
S. & Farinas, C.S. 2012. Production of biomass-degrading multi-enzyme
complexes under solid-state fermentation of soybean meal using a
bioreactor. Enzyme Research 2012: Article ID. 248983.
Vu,
K.D., Tyagi, R.D., Valero, J.R. & Surampalli, R.Y. 2009. Impact
of different pH control agents on biopesticides activity of Bacillus
thuringiensis during the fermentation of starch industry wastewater.
Bioprocess Biocatalyst Engineering 32: 511-519.
Yezza,
A., Tyagi, R.D., Valero, J.R. & Surampalli, R.Y. 2006. Bioconversion
of industrial wastewater and wastewater sludge in Bacillus thuringiensis
based biopesticides in pilot fermentor. Bioresource Technology
97: 1850-1857.
*Corresponding author; email: muskhazli@upm.edu.my
|