Sains Malaysiana 45(4)(2016): 601–608
Treatment of Wastewater
Originating from Aquaculture and Biomass Production in Laboratory
Algae Bioreactor using Different Carbon Sources
(Rawatan Air Sisa daripada
Pengeluaran Akuakultur dan Biojisim di Makmal Alga Bioreaktor
Menggunakan Punca Karbon yang Berbeza)
KATYA
N.
VELICHKOVA1*,
IVAYLO
N.
SIRAKOV1,
GEORGI
G.
BEEV2,
STEFAN
A.
DENEV2
& DIMITAR H. PAVLOV3
1Department of Biology and Aquaculture,
Faculty of Agriculture, Trakia University, 6000 Stara Zagora,
Bulgaria
2Department
of Biochemistry, Microbiology and Physics, Faculty of Agriculture,
Trakia University, 6000 Stara Zagora, Bulgaria
3Department
of Plant Production, Faculty of Agriculture, Trakia University,
6000 Stara Zagora
Bulgaria
Received:
31 May 2015/Accepted: 6 October 2015
ABSTRACT
The aim of present study
was to explore the effect of different carbon sources on biomass
accumulation in microalgae Nannochloropsis oculata and Tetraselmis chuii and their ability to remove N and
P compounds during their cultivation in aquaculture wastewater.
Microalgae cultivation was performed in laboratory bioreactor
consisted from 500 mL Erlenmeyer flasks, containing 250 mL wastewater
from semi closed recirculation aquaculture system. The cultures
were maintained at room temperature (25-27ºC) on a fluorescent
light with a light: dark photoperiod of 15 h: 9 h. The microalgae
species were cultivated in wastewater with different carbon sources:
glucose, lactose and saccharose. The growth of strains was checked
for 96 h period. In the present study, N. oculata and T.
chuii showed better growth in wastewater from aquaculture with
saccharose carbon source during the experiment. The most effective
reduce of nitrate and total nitrogen was proved in N. oculata
cultivated in wastewater with glucose as carbon source. T.
chuii cultivated in wastewater containing glucose showed 8.27%
better cleaning effect in ammonium compared with N. oculata.
T. chuii grew in wastewater with glucose as carbon source showed
19.5% better removal effect in phosphate compared with N.
oculata strain.
Keywords: Biomass; Nannochloropsis oculata; Tetraselmis chuii; wastewater
ABSTRAK
Tujuan kajian ini dijalankan
adalah untuk mengkaji kesan punca karbon yang berbeza terhadap
pengumpulan biojisim pada mikroalga Nannochloropsis
oculata dan Tetraselmis chuii serta keupayaan mereka
untuk mengeluarkan sebatian N dan P semasa penanaman di dalam
akuakultur air sisa. Penanaman mikroalga dijalankan dalam bioreaktor
makmal yang terdiri daripada 500 termos mL Erlenmeyer, yang mengandungi
250 mL air sisa daripada sistem edaran semula akuakultur separuh
tertutup. Kultur dikekalkan pada suhu bilik (25-27ºC dengan cahaya
lampu neon: fotokala gelap 15 h: 9 h. Spesies mikroalga telah
ditanam dalam air sisa dengan punca karbon berbeza: glukosa, laktosa
dan sakarosa. Pertumbuhan strain telah dipantau untuk tempoh 96
jam. Dalam kajian ini N. oculata dan T. chuii menunjukkan
pertumbuhan yang lebih baik dalam air sisa oleh akuakultur, dengan
punca karbon sakarosa semasa eksperimen. Paling berkesan mengurangkan
nitrat dan jumlah nitrogen telah dibuktikan dalam N. oculata
yang ditanam di dalam air sisa dengan glukosa sebagai punca
karbon. T. chuii yang ditanam dalam air sisa mengandungi
glukosa menunjukkan kesan pembersihan 8.27% lebih baik dalam ammonium
berbanding dengan N. oculata. T. chuii yang membesar dalam
air sisa dengan menggunakan glukosa sebagai punca karbon menunjukkan
kesan penyingkiran 19.5% lebih baik dalam fosfat berbanding dengan
strain N. oculata.
Kata kunci: Air sisa; biojisim; Nannochloropsis oculata;
Tetraselmis chuii
REFERENCES
Admiraal, W.,
Riaux-Gobin, C. & Laane, R.W.M. 1987. Interactions of ammonium,
nitrate, and D- and L- amino acids in the nitrogen assimilation
of two species of estuarine benthic diatoms. Mar. Ecol. Prog.
Ser. 40: 267-273.
Bashan, L.E., Hernandez,
J.P., Morey, T. & Bashan, Y. 2004. Microalgae growth-promoting
bacteria as ‘helpers’ for microalgae: A novel approach for removing
ammonium and phosphorus from municipal wastewater. Water Res.
38: 466-474.
Bashan,
L.E., Bashan, Y., Moreno, M., Lebsky, V.K. & Bustillos, J.J.
2002. Increased pigment and lipid content, lipid variety, and
cell and population size of the microalgae Chlorella spp.
When co-immobilized in alginate beads with the microalgae-growth
promoting bacterium Azospirillum brasilense. Can. J.
Microbiol. 48: 514-521.
Bastos,
R.G., Paiva, P.R., Rigo, M., Veiga, G. & Queiroz, M.I. 2011.
Growth of Aphanothece microscopica Nägeli on exogenous
sugars. Biosci. J., Uberlândia. 27: 156-161.
Blasco,
D. & Conway, H.L. 1982. Effect of ammonium on the regulation
of nitrate assimilation in natural phytoplankton populations.
J. Exp. Mar. Biol. Ecol. 61: 157- 158.
Becker,
E.W. 1994. Culture Media. In Microalgae: Biotechnology and
Microbiology. Cambridge: Cambridge University Press. pp. 9-41.
Cerón,
G.M., Camacho, F.G., Mirón, S., Sevilla, M.F., Chisti, Y. &
Grima, E.M. 2006. Mixotrophic production of marine microalga Phaeodactylum
tricornutum on various carbon sources. J. Microbiol. Biotechnol.
16: 689-694.
Chandra,
R., Rohit, M., Swamy, Y. & Venkata, M. 2014. Regulatory function
of organic carbon supplementation on biodiesel production during
growth and nutrient stress phases of mixotrophic microalgae cultivation.
Bioresource Technology 165: 279-287.
Cid,
A., Abalde, J. & Concepción, H. 1992. High yield mixotrophic
cultures of the marine microalga Tetraselmis suecica Butcher.
J. Appl. Phycol. 4: 31-37.
Cresswell,
R.C. & Syrett, P.J. 1979. Ammonium inhibition of nitrate uptake
by the diatom. Phaeodactylum tricornutum. Plant Sci.
Lett. 14: 321-325.
Flynn,
K.J. 1999. Nitrate transport and ammonium-nitrate interactions
at high nitrate concentrations and low temperature. Mar. Ecol.
Prog. Ser. 187: 283-287.
Flynn,
K.J., Fasham, M.J.R. & Hipkin, C.R. 1997. Modelling the interactions
between ammonium and nitrate uptake in marine phytoplankton. Phil.
Trans. R. Soc. Lond. 352: 1625-1645.
Goldman,
J.C., Azov, Y., Riley, C.B. & Dennett, M.R. 1982. The еffect
of pH in intensive microalgal cultures. I. Biomass regulation.
Journal of Experimental Marine Biology and Ecology 57:
1-13.
Gonzalez,
C., Marciniak, J., Villaverde, S., Garcia-Encina, P.A. & Munoz,
R. 2008. Microalgae-based processes for the biodegradation of
pretreated piggery wastewaters. Appl. Microbiol. Biot.
80: 891-898.
Harun,
R., Singh, M., Forde, G.M. & Danquah, M.K. 2010. Bioprocess
engineering of microalgae to produce a variety of consumer products.
Renew. Sust. Energ. Rev. 14: 1037-1047.
Herrera,
J., Paneque, A., Maldonado, J.M., Barea, J.L. & Losada, M.
1972. Regulation by ammonia of nitrate reductase synthesis and
activity in Chlamydomonas reinhardi. Biochem. Biophys.
Res. Commun. 48: 996-1003.
Hii,
Y.S., Soo, C.L., Chuah, T.S., Mohd-Azmi, A. & Abol- Munafi,
A.B. 2011. Interactive effect of ammonia and nitrate on
the nitrogen uptake by Nannochloropsis sp.
Journal of Sustainability Science and Management
6: 60-68.
Hodaifa,
G., Martinez, M. & Sanchez, S. 2008. Use of industrial wastewater
from olive-oil extraction for biomass production of Scenedesmus
obliquus. Bioresource Technol. 99: 1111- 1117.
Kargupta,
W., Ganesh, A. & Mukherji, S. 2015. Estimation of carbon dioxide
sequestration potential of microalgae grown in a batch photobioreactor.
Bioresour Technol. 180: 370-375.
Kim,
M.K., Park, J.W., Park, C.S., Kim, S.J., Jeune, K.H., Chang, M.U.
& Acreman, J. 2007. Enhanced production of Scenedesmus
spp. (green microalgae) using a new medium containing fermented
swine wastewater. Bioresource Technol. 98: 2220-2228.
Lebeau,
T. & Robert, J.M. 2006. Biotechnology of immobilized micro
algae: A culture technique for the future? In Algal Cultures,
Analogues of Blooms and Applications, edited by Rao, S. New
Hampshire: Science Publishers. pp. 801-837.
Lee,
K. & Lee, C. 2002. Nitrogen removal from wastewaters by microalgae
without consuming organic carbon sources. J. Microbiol. Biotechnol.
12: 979-985.
Li,
X., Hu, H., Gan, K. & Sun, Y. 2010a. Effects of different
nitrogen and phosphorus concentrations on the growth, nutrient
uptake, and lipid accumulation of a freshwater microalga Scenedesmus
spp. Bioresource Technol. 101: 5494-5500.
Li,
X., Hu, H.Y., Gan, K. & Yang, J. 2010b. Growth and nutrient
removal properties of a freshwater microalga Scenedesmus sp.
LX1 under different kinds of nitrogen sources. Ecol. Eng. 36:
379-381.
Losada,
M., Paneque, A., Aparicio, P.J., Vega, J.M., Cgrdenas, J. &
Herrera, J. 1970. Inactivation and repression by ammonium of the
nitrate reducing system in Chlorella. Biochem. Biophys.
Res. Commun. 38: 1009-1015.
Lowrey,
J.B. 2011. Seawater/wastewater production of microalgae-based
biofuels in closed loop tubular photobioreactors, 127 (MSc in
Agriculture, Agricultural Engineering Technology, The Faculty
of California Polytechnic State University, San Luis Obispo, USA
(Unpublished).
Maguer,
J.F., Helguen, S., Madec, C., Labry, C. & Corre, P.L. 2007.
Nitrogen uptake and assimilation kinetics in Alexandrium minutum
(Dynophyceae): Effect of n-limited growth rate on nitrate
and ammonium interactions. J. Phycol. 43: 295-303.
Martinez,
M.E., Sanchez, S., Jimenez, J.M., El Yousfi, F. & Munoz, L.
2000. Nitrogen and phosphorus removal from urban wastewater by
the microalga Scenedesmus obliquus. Bioresource Technol.
73: 263-272.
Michels,
M., Vaskoska, M., Vermu, M. & Wijffels, R. 2014. Growth of
Tetraselmis suecica in a tubular photobioreactor on wastewater
from a fish farm. Water research 65: 290-296.
Munoz,
R. & Guieysse, B. 2006. Algal-bacterial processes for the
treatment of hazardous contaminants: A review. Water Research
40: 2799-2815.
Paasche,
E. & Kristiansen, S. 1982. Nitrogen nutrition of the phytoplankton
in the Oslofjord. Estuar. Coast. Shelf. Sci. 14: 237-249.
Parker,
R.A. 1993. Dynamic models for ammonium inhibition of nitrate uptake
by phytoplankton. Ecol. Modell. 66: 113-120.
Perez-Garcia,
O., Froylan, M.E., Escalante, L.E. & Bashan, Y. 2011. Heterotrophic
cultures of microalgae: Metabolism and potential products. Water
Res. 45: 11-36.
Pulz,
O. & Gross, W. 2004. Valuable products from biotechnology
microalgae. Appl. Microbiol. Biotechnol. 65: 635-648.
Pulz,
O. 2001. Photobioreactors: Production systems for phototrophic
microorganisms. Appl. Microbiol. Biotechnol. 57: 287-293.
Ruiz-Marin,
A., Leopoldo, G., Espinosa, M. & Stephenson, T. 2010. Growth
and nutrient removal in free and immobilized green algae in batch and
semi-continuous cultures treating real wastewater. Bioresource
Technol. 101: 58-64.
Sousa,
L., Hora, D., Sales, E. & Perelo, L. 2014. Cultivation of
Nannochloropsis sp. in brackish groundwater supplemented
with municipal wastewater as a nutrient source. Braz. Arch.
Boil. Technol. 57: 171-177.
Syrett,
P.J. & Morris, I. 1963. The inhibition of nitrate assimilation
by ammonium in Chlorella. Biochim. Biophys. Acta.
67: 566-575.
Usharani,
K. & Lakshmanaperumalsamy, P. 2010. Bio-treatment of phosphate
from synthetic wastewater using Pseudomonas sp. YLW-7.
Journal of Applied Sciences and Environmental Management 14:
75-80.
Voltolina,
D., Gomez-Villa, H. & Correa, G. 2005. Nitrogen removal and
recycling by Scenedesmus obliquus in semicontinuous cultures
using artificial wastewater and a simulated light and temperature
cycle. Bioresource Technol. 96: 359-362.
*Corresponding author; email: genova@abv.bg