Sains Malaysiana 45(4)(2016): 653–658

Influence of Sintering Parameters on the Compressive Yield Strength of Stainless Steel Foams Produced by the Space Holder Method

(Pengaruh Parameter Pensinteran terhadap Kekuatan Alah Mampatan Keluli Tahan Karat Berbusa yang Dihasilkan melalui Kaedah Pengisi Pemegang Ruang)

 

 

TAN KOON TATT1,2, NORHAMIDI MUHAMAD1*, ANDANASTUTI MUCHTAR1, ABU BAKAR SULONG1 & NEO MING CHERNG1

 

1Department of Mechanical and Material Engineering, Faculty of Engineering and Built Environment

Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

2Faculty of Pharmacy, MAHSA University, Pusat Bandar Damansara, Damansara Heights

50490 Kuala Lumpur, Malaysia

 

Received: 19 March 2015/Accepted: 3 November 2015

 

ABSTRACT

Metallic foams are a new class of materials that have a great potential to be used in various functional and structural applications. Due to their competitive price compared to aluminium, metallic foams are anticipated to become an alternative material for light-weight structures. In this study, stainless steel foams are fabricated using a powder space holder method. The materials used include stainless steel powder, a novel space holder glycine and binders consisting of palm stearin and of polyethylene (PE). The stainless steel foams are sintered at 1100oC, 1200oC and 1300oC with sintering times of 1, 2 and 3 h, respectively, to investigate the effects of the sintering parameters on the compressive yield strength of the stainless steel foams. The results showed that all of the stainless steel foams produced exhibit the general behaviours of metal foams. The sintering time is the most significant parameter that influences the compressive yield strength of stainless steel foams. Increasing the sintering temperature and sintering time will increase the compressive yield strength. The interaction between the sintering temperature and sintering time is found to be not statistically significant.

 

Keywords: ANOVA; compressive strength; metal foams; space holder

 

ABSTRAK

Logam berbusa merupakan kelas bahan terbaru yang mempunyai potensi yang besar untuk digunakan dalam pelbagai aplikasi fungsi dan struktur. Disebabkan harganya yang kompetitif berbanding dengan aluminium, logam berbusa dijangka menjadi bahan alternatif untuk struktur berat-ringan. Dalam kajian ini, keluli tahan karat berbusa difabrikasi menerusi kaedah pemegang pengisi ruang. Bahan yang digunakan termasuklah serbuk keluli tahan karat, pemegang pengisi ruang terbaru, glisina dan bahan pengikat yang terdiri daripada stearin sawit dan polietilena (PE). Keluli tahan karat berbusa disinter pada suhu 1100oC, 1200oC dan 1300oC dengan masa pensinteran masing-masing 1, 2 dan 3 jam untuk mengkaji kesan parameter pensinteran terhadap kekuatan mampatan keluli tahan karat berbusa. Keputusan kajian menunjukkan bahawa semua keluli tahan karat berbusa yang dihasilkan menunjukkan perilaku umum logam berbusa. Masa pensinteran merupakan parameter yang paling signifikan mempengaruhi kekuatan mampatan keluli tahan karat berbusa. Peningkatan suhu dan masa pensinteran akan meningkatkan kekuatan mampatan. Interaksi antara suhu pensinteran dan masa pensinteran didapati tidak ketara.

 

Kata kunci: ANOVA; busa logam; kekuatan mampatan; pemegang pengisi

 

REFERENCES

Abdel, G.N.A., El-Shenawy, A.E. & Hussien, W.A.M. 2011. The inhibitive effect of some amino acids on the corrosion behaviour of 316 L stainless steel in sulfuric acid solution. Modern Applied Science 5(4): 19-29.

Ahmad, S., Muhamad, N., Muchtar, A., Sahari, J., Jamaludin, K.R., Ibrahim, M.H.I., Mohamad Nor, N.H. & Murtadhahadi. 2010. Pencirian titanium berbusa yang dihasilkan pada suhu pensinteran yang berbeza menggunakan kaedah buburan. Sains Malaysiana 39(1): 77-82.

Alizadeh, M. & Mirzaei-Aliabadi, M. 2012. Compressive properties and energy absorption behavior of Al-Al2O3 composite foam synthesized by space-holder technique. Materials and Design 35: 419-424.

Ashby, M.F., Evans, A., Fleck, N.A., Gibson, L.J., Hutchison, J.W. & Wadley, H.N.G. 2000. Metal Foams-Design Guide. US: Butterworth- Heinemann.

Bekoz, N. & Oktay, E. 2013. Effect of heat treatment on mechanical properties of low alloy steel foams. Materials and Design 51: 212-218.

Dewidar, M. 2012. Influence of processing parameters and sintering atmosphere on the mechanical properties and microstructure of porous 316 L stainless steel for possible hard-tissue applications. International Journal of Mechanical & Mechatronics Engineering 12(1): 10-24.

Dewidar, M., Khalil, K.A. & Lim, J.K. 2007. Processing and mechanical properties of porous 316 L stainless steel for biomedical applications. Trans. Nonferrous Met. Soc. China 17: 468-473.

Esen, Z. & Bor, S. 2007. Processing of titanium foams using magnesium spacer particles. Scripta Materialia 56: 341-344.

German, R.M. 1996. Sintering Theory and Practice. New York: Wiley.

Gibson, L.J. & Ashby, M.F. 1997. Cellular Solids: Structure and Properties [M]. Cambridge: Cambridge University Press.

Jha, N., Mondal, D.P., Majumdar, J.D., Badkul, A., Jha, A.K. & Khare, A.K. 2013. Highly porous open cell Ti-foam using NaCl as temporary space holder through powder metallurgy route. Materials and Design 47: 810-819.

Jiang, B., Zhao, N.Q., Shi, C.S., Du, X.W., Li, J.J. & Man, H.C. 2005. A novel method for making open cell aluminium foams by powder sintering process. Materials Letters 59: 3333-3336.

Kotan, G. & Bor, A.S. 2007. Production and characterization of high porosity Ti-6Al-4V foam by space holder technique in powder metallurgy. Turkish J. Eng. Env. Sci. 31: 149-156.

Mutlu, I. & Oktay, E. 2013. Mechanical properties of sinter-hardened Cr–Si–Ni–Mo based steel foam. Materials and Design 44: 274-282.

Salahinejad, E., Amini, R., Marasi, M. & Jafar, H.M. 2010. The effect of sintering time on the densification and mechanical properties of a mechanically alloyed Cr–Mn–N stainless steel. Materials and Design 31: 527-532.

Schüler, P., Fischer, S.F., Bührig-Polaczek, A. & Fleck. C. 2013. Deformation and failure behaviour of open cell Al foams under quasistatic and impact loading. Materials Science & Engineering A 587: 250-261.

Surace, R., De Filippis, L.A.C., Ludovico, A.D. & Boghetich, G. 2009. Influence of processing parameters on aluminium foam produced by space holder technique. Materials and Design 30: 1878-1885.

Wen, C.E., Mabuchi, M., Yamada, Y., Shimojima, K., Chino, Y. & Asahina. 2001. Processing of biocompatible porous Ti and Mg. Scripta Materialia 45: 1147-1153.

Yoon, T.S., Lee, Y.H., Ahn, S.H., Lee, J.H. & Lee, C.S. 2003. Effects of sintering conditions on the mechanical properties of metal injection molded 316 L stainless steel. ISIJ Int. 43: 119-126.

 

 

*Corresponding author; email: norhamidi@ukm.edu.my

  

previous