Sains Malaysiana 45(5)(2016): 659–667
Best Band Ratio Combinations for
the Lithological Discrimination of the Dayang Bunting and Tuba
Islands, Langkawi, Malaysia
(Gabungan Nisbah Jalur Terbaik
untuk Diskriminasi
Litologi di Pulau Dayang Bunting
dan Pulau Tuba, Langkawi, Malaysia)
NORBERT SIMON*,
CHE
AZIZ
ALI,
KAMAL
ROSLAN
MOHAMED
& KAMILIA SHARIR
Geology Programme, School of Environmental
& Natural Resource Sciences, Universiti
Kebangsaan Malaysia, 43600 Bangi, Selangor Darul Ehsan, Malaysia
Received: 17 September 2015/Accepted:
25 November 2015
ABSTRACT
Band ratio combination has
been proven to be one of the most useful image processing methods
for lithological discrimination, as discussed by many researchers
in the past. In this study, bands from Landsat 5 TM were used to generate different
ratio combinations to discriminate the different lithologies
of two islands located at the southern end of the Langkawi archipelago,
specifically the Dayang Bunting and Tuba Islands. Both islands
comprise similar lithological units – namely, limestone/marble
(Permian & Silurian-Ordovician), granite and alluvium. There
are two rock formations that are limestone/marble dominated. The
first is known as the Chuping Formation,
which consists of limestone/marble and the other is the Setul Formation, which consists of not only limestone/marble
but also of two detrital intervals. Different ratio combinations
obtained from past researchers and that was produced from this
study were tested on the image of the Dayang Bunting and Tuba
Islands to identify the best ratio combinations that were able
to discriminate the different lithologies
for both islands. A total of 28 combinations were performed to
examine which combinations are the most effective. From the 28
combinations, three were identified as the most suitable; 4/3
5/2 3/1, 5/3 4/3 4/1 and 4/2 5/3 4/3 in the RGB sequence.
These combinations enhanced the spectral differences of each lithology
unit so that it can be distinguished easily. Apart from the difference
in the spectral response, the texture of the lithologies
was also enhanced to assist in discriminating the different units.
Keywords: Band ratio combination;
Landsat TM; Langkawi; lithological discrimination;
spectral
Response
ABSTRAK
Gabungan nisbah jalur
telah terbukti menjadi salah satu
kaedah penting
dalam pemprosesan imej untuk mengenal
pasti diskriminasi
litologi, seperti yang telah dibincangkan oleh ramai penyelidik
terdahulu. Dalam kajian ini,
jalur daripada
Landsat 5 TM
telah digunakan untuk menghasilkan kombinasi nisbah yang berbeza bagi menentukan
diskriminasi litologi
yang terdapat di dua pulau yang terletak di hujung selatan kepulauan Langkawi, iaitu Pulau Dayang Bunting dan Pulau Tuba.
Kedua-dua pulau tersebut mempunyai persamaan daripada segi unit litologi iaitu batu kapur/marmar (Permian Silur-Ordovisi),
granit dan
alluvium. Terdapat dua formasi yang
membentuk batu
kapur/marmar di kawasan kajian iaitu Formasi Chuping
yang terdiri daripada
batu kapur/marmar
dan yang kedua
ialah Formasi Setul,
terdiri daripada
bukan sahaja batu
kapur/marmar
malah terdapat juga perselangan antara dua detrital. Kombinasi nisbah berbeza yang diperoleh daripada penyelidik terdahulu dan yang dihasilkan dalam kajian ini
diuji ke atas imej Pulau
Dayang Bunting dan Pulau Tuba untuk
mengenal pasti
kombinasi nisbah terbaik yang mampu membezakan litologi berlainan di kedua-dua pulau. Sejumlah 28 kombinasi telah
dijalankan untuk
mengkaji kombinasi mana yang paling
berkesan. Daripada gabungan
28 nisbah jalur,
tiga telah dikenal
pasti sebagai
yang paling sesuai; 4/3 5/2 3/1, 5/3 4/3 4/1 dan
4/2 5/3 4/3 dalam turutan
RGB.
Kombinasi
ini dipilih kerana
menunjukkan perbezaan
yang ketara bagi membezakan
litologi di kawasan
tersebut. Selain itu, tekstur litologi
juga membantu dalam
membezakan unit litologi yang lain.
Kata kunci: Diskriminasi
litologi; gabungan
nisbah jalur; Landsat TM; Langkawi; respons
spectrum
REFERENCES
Abdullah,
I. & Sarman, M. 1999. Geotourism of Langkawi
Island. In Geological Heritage of
Malaysia, edited by Komoo, I. &
Leman, M.S. Institute of Environment & Development (LESTARI),
Bangi. pp. 33-51.
Abdullah, I. 1989.
Sejarah canggaan batuan
di Kepulauan Langkawi. Proc.
Seminar Pembangunan Pelancongan Langkawi:
Sejarah Alam
Semulajadi, 27-28 September 1989,
Langkawi.
Ali,
E.A., El Khidir, S.O., Babikir,
I.A.A. & Abdelrahman, E.M. 2012. Landsat ETM+7
digital image processing techniques for lithological and structural
lineament enhancement: Case study around Abidiya
Area, Sudan. The Open Remote Sensing Journal 5: 83-89.
Bishta,
A.Z. 2009.
Lithologic discrimination using selective image
processing technique of Landsat 7 data, Um Bogma
Environs West Central Sinai, Egypt. JKAU, Earth Sci.
20(1): 193-213.
Ciampalini, A., Garfagnoli, F., Antonielli, B.,
Del Venetisette, C. & Moretti, S.
2012. Photo-lithological map of the southern flank of the Tindouf Basin (Western Sahara). Journal of Maps
8(4): 453-464.
Gad, S. & Kusky, T. 2006. Lithological mapping in
the Eastern Desert of Egypt, the Barramiya
area, using Landsat thematic mapper (TM). Journal of
African Earth Sciences 44: 196-202.
Jones, C.R. 1981.
The geology and mineral resources of Perlis,
North Kedah and the Langkawi Islands. Geological
Survery District Memoir 17.
Juhari, M.A. 1999. Geomorphology of Dayang Bunting Island, Tuba Island, and Singa Besar Island, Langkawi.
In Geological Heritage of Malaysia, edited by Komoo,
I. & Leman, M.S. Bangi: Institute
of Environment & Development (LESTARI). pp. 161-172.
Komoo, I. 2002. The
Langkawi Geopark: Concept and implementation
strategy. In Geological Heritage of Malaysia, edited by
Komoo, I. & Leman, M.S. Bangi:
Institute of Environment & Development (LESTARI). pp. 42-61.
Komoo, I. 1999. Conservation geology of Langkawi Island. In Geological Heritage
of Malaysia, edited by Komoo, I.
& Leman, M.S. Bangi: Institute of
Environment & Development (LESTARI). pp. 3-31.
Leman, M.S. 2010.
Geoheritage conservation in Langkawi Geopark, Malaysia.
Akademika 80: 19-30.
Lim, H.S., Jafri,
M.Z.M., Abdullah, K. & Alsultan,
S. 2012. Application of a simple mono window land surface temperature algorithm
from Landsat ETM+ over Al Qassim, Saudi
Arabia. Sains Malaysiana
41(7): 841-846.
Madani,
A. 2014.
Assessment and evaluation of band ratios, Brovey
and HSV techniques for lithologic discrimination and mapping using
Landsat ETM+ and SPOT-5 data. International
Journal of Geosciences 5: 5-11.
Manap,
M.A., Ramli, M.F., Sulaiman,
W.N.A. & Surip, N. 2010. Application of remote sensing
in the identification of the geological terrain features in Cameron
Highlands, Malaysia. Sains
Malaysiana 39(1): 1-11.
Mshiu, E.E. 2011. Landsat
remote sensing data as an alternative approach for geological
mapping in Tanzania: A case study in the rung we volcanic province,
south-western tanzania. Tanz. J. Sci. 37:
26-36.
Mulder, V.L., de
Bruin, S., Schaepman, M.E. & Mayr,
T.R. 2011. The use of remote sensing in soil
and terrain mapping - A review. Geoderma
162: 1-19.
Rouskov,
K., Popov, K., Stoykov, S. & Yamaguchi,
Y. 2005. Some applications of the remote
sensing in geology by using of aster images. Scientific
Conference ‘Space, Ecology, Safety’ with International Participation,
S E S ’10-13 June, Varna, Bulgaria. pp.
167- 173.
Sabins, F.F. 1999. Remote
Sensing for Mineral Exploration. Ore. Geology Reviews
14: 157-183.
Sadek,
M.F. & Hassan, S.M. 2012. Application of remote sensing in lithological discrimination and geological
mapping of Precambrian basement rocks in the eastern desert of
Egypt. The 33rd Asian Conference on
Remote Sensing, Pattaya, Thailand.
Shahabi, H., Ahmad, B. & Khezri, S. 2012. Application of satellite
remote sensing for detailed landslide inventories using frequency
ratio model and GIS. International Journal of Computer
Science Issues 9(4): 108-117.
Sultan,
M., Arvidson, R.E, Sturchio,
N.C. & Guiness, E.A. 1987. Lithologic mapping in Arid Refions
with Landsat thematic mapper data: Meatig
Dome, Egypt. Geological Society of America Bulletin 99:
748-762.
Tofani,
V., Segoni, S., Agostini,
A., Catani, F. & Casagli, N. 2013. Technical Note:
Use of remote sensing for landslide studies in Europe. Nat.
Hazards Earth Syst. Sci. 13: 299-309.
USGS. 2013. Landsat
– A global land – imaging mission. Accessed
on 25 June 2015. http://pubs.usgs.gov/fs/2012/3072/
fs2012-3072.pdf.
van der Meer, F.D.,
van der Werff, H.M.A., van Ruitenbeek,
F.J.A., Hecker, C.A., Bakker, W.H., Noomen,
M.F., van der Meijde, M., Carranza,
J.M., de Smeth, J.B. & Woldai, T. 2012.
Multi- and hyperspectral
geologic remote sensing: A review. International Journal of
Applied Earth Observation and Geoinformation
14: 112-128.
Vogelmann,
J.E., Helder, D., Morfitt, R., Choate,
M.J., Merchant, J.W. & Bulley, H. 2001. Effects of Landsat 5 thematic mapper and
Landsat 7 enhanced thematic mapper plus radiometric and geometric
calibrations and corrections on landscape characterization. Remote
Sensing of Environment 78: 55-70.
Wilford,
J. & Creasey, J. 2002. Landsat thematic mapper. In Geophysical
and Remote Sensing Methods for Regolith Exploration, edited
by Papp, E. CRCLEME Open File Report 144: 6-12.
Won-In, K. &
Charusiri, P. 2003. Enhancement of thematic
mapper satellite images for geological mapping of the Cho Dien
area, Northern Vietnam. International Journal of Applied Earth
Observation and Geoinformation 4:
183-193.
*Corresponding author; email: norbsn@ukm.edu.my