Sains Malaysiana 45(5)(2016):
787–793
Replication of a
Malaysian Strain Avian Influenza A Virus H5N1 in Madin-Darby Canine Kidney and
African Green Monkey Kidney Cells
(Replikasi Virus Influenza
Avian A Jenis H5N1 dalam Sel Ginjal Kanin Madin-Darby dan Monyet Hijau Afrika)
TOONG SENG TAN1, SHARIFAH SYED HASSAN2 & WEI BOON YAP1*
1Biomedical Science
Programme, School of Diagnostic and Applied Health Sciences, Faculty of Health
Science, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala
Lumpur, Malaysia
2School of Medicine and
Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan
47500 Bandar Sunway,
Selangor Darul Ehsan, Malaysia
Received: 1 September
2015/Accepted: 17 November 2015
ABSTRACT
The use of cell lines such as
Madin-Darby Canine Kidney (MDCK) and African Green Monkey Kidney
(Vero) cells in influenza vaccine production is much advocated presently as a
safer alternative to chicken embryonated eggs. It is thus essential to
understand the influenza virus replication patterns in these cell lines prior
to utilizing them in vaccine production. The infectivity of avian influenza A virus (A/Chicken/Malaysia/5858/2004) H5N1 in MDCK and Vero cell lines was first assessed by comparing the
cytopathic effect (CPE) caused by the virus infection.
The viral loads in both of the infected media and cells were also compared. The
results showed that both of the MDCK and Vero cells began to
exhibit significant CPE (p<0.05) after 48 h
post-infection (h p.i). The MDCK cell line was more
susceptible to the virus infection compared to Vero cell line throughout the
incubation period. A higher viral load was also detected in the host cells
compared to their respective culturing media. Interestingly, after reaching its
maximum titer at 48 h p.i, the viral load in MDCK cells
declined meanwhile the viral load in Vero cells increased gradually and peaked
at 120 h p.i. Overall, both cell lines support efficient H5N1 virus
replication. While the peak viral loads measured in the two cell lines did not
differ much, a more rapid replication was observed in the infected MDCK samples. The finding showed that MDCK cell
line might serve as a more time-saving and cost-effective cell culture-based
system compared to Vero cell line for influenza vaccine production.
Keywords: Cytopathic effect; H5N1; MDCK;
Vero; viral load
ABSTRAK
Penggunaan
kultur sel seperti sel ginjal kanin Madin-Darby (MDCK)
dan monyet hijau Afrika (Vero) dalam penghasilan vaksin influenza
adalah lebih selamat berbanding telur ayam berembrio yang disarankan
pada masa ini. Maka, adalah penting untuk kita memahami corak
replikasi virus influenza dalam sel-sel tersebut sebelum digunakan
dalam penghasilan vaksin. Keboleh-jangkitan
virus influenza jenis H5N1 (A/Chicken/Malaysia/5858/2004) dalam
sel MDCK dan
Vero dinilai dengan membandingkan kesan sitopatik (CPE)
yang diakibatkan oleh jangkitan virus influenza. Titer
virus dalam media dan sel terjangkit turut dibandingkan.
Hasil kajian menunjukkan kedua-dua sel MDCK dan Vero mula mempamerkan CPE
yang signifikan (p < 0.05) selepas 48 jam pasca-infeksi
(h p.i). Sel MDCK adalah lebih rentan kepada jangkitan
virus sepanjang tempoh eraman virus berbanding dengan sel Vero.
Titer virus yang lebih tinggi diperoleh dalam sel perumah terjangkit
berbanding dengan media kultur. Selepas
mencapai titer maksimum pada 48 h p.i, titer virus dalam sel MDCK menurun
manakala titer virus dalam sel Vero kekal meningkat secara perlahan
dan memuncak pada 120 h p.i. Secara keseluruhan, kedua-dua sel perumah
didapati mampu menyokong replikasi virus H5N1 dengan cekap. Meskipun
titer virus maksimum yang dicapai antara kedua-dua sel perumah tidak
berbeza, replikasi yang lebih pantas diperhatikan dalam sel MDCK.
Hal ini mencadangkan penggunaan sel MDCK dalam penghasilan vaksin
influenza adalah lebih jimat daripada segi masa dan kos
berbanding dengan sel Vero.
Kata
kunci: H5N1; kesan sitopatik; MDCK; titer
virus; Vero
REFERENCES
Abdoli,
A., Soleimanjahi, H., Tavassoti Kheiri, M., Jamali, A. & Jamaati, A. 2013. Determining influenza
virus shedding at different time points in Madin-Darby canine kidney cell line.
Cell Journal 15(2): 130-135.
Balasubramaniam,
V.R., Hassan, S.S., Omar, A.R., Mohamed, M., Noor, S.M., Mohamed, R. &
Othman, I. 2011. Cellular transcripts regulated during infections with highly pathogenic H5N1
avian influenza virus in 3 host systems. Virology Journal 8(196): 8-196.
Brühl,
P., Kerschbaum, A., Kistner, O., Barrett, N., Dorner, F. & Gerenčer,
M. 2000. Humoral and cell-mediated immunity to Vero cell-derived influenza vaccine. Vaccine 19(9-10): 1149-1158.
De Jong, M.D., Simmons,
C.P., Thanh, T.T., Hien, V.M., Smith, G.J., Chau, T.N., Hoang, D.M., Chau,
N.V., Khanh, T.H., Dong, V.C., Qui, P.T., Cam, B.V., Ha Do, Q., Guan, Y.,
Peiris, J.S., Chinh, N.T., Hien, T.T. & Farrar, J. 2006. Fatal outcome of
human influenza A (H5N1) is associated with high viral load and
hypercytokinemia. Nature Medicine 12(10): 1203-1207.
Donis, R.O. 2014.
Performance characteristics of qualified cell lines for isolation and
propagation of influenza viruses for vaccine manufacturing. Vaccine 32(48):
6583-6590.
El
Saleeby, C.M., Bush, A.J., Harrison, L.M., Aitken, J.A. & Devincenzo, J.P.
2011. Respiratory syncytial virus load, viral dynamics, and disease severity in
previously healthy naturally infected children. The Journal of Infectious
Diseases 204(7): 996-1002.
Genzel,
Y., Dietzsch, C., Rapp, E., Schwarzer, J. & Reichl, U. 2010. MDCK and Vero cells for
influenza virus vaccine production: A one-to-one comparison up to lab-scale
bioreactor cultivation. Applied Microbiology and Biotechnology 88(2):
461-475.
Govorkova, E.A.,
Kaverin, N.V., Gubareva, L.V., Meignier, B. & Webster, R.G. 1995.
Replication of influenza A viruses in a green monkey kidney continuous cell
line (Vero). The Journal of Infectious Diseases 172(1): 250-253.
Hamilton,
S.B., Wyatt, D.E., Wahlgren, B.T., O’dowd, M.K., Morrissey, J.M., Daniels, D.E.
& Lednicky, J.A. 2011. Higher titers of some H5N1
and recent human H1N1 and H3N2 influenza viruses in Mv1 Lu vs. MDCK cells. Virology Journal 8: 66.
Hinshaw, V.S., Olsen,
C.W., Dybdahl-Sissoko, N. & Evans, D. 1994. Apoptosis: A mechanism of cell
killing by influenza A and B viruses. Journal of Virology 68(6):
3667-3673.
Lau,
L.L., Cowling, B.J., Fang, V.J., Chan, K.H., Lau, E.H., Lipsitch, M., Cheng,
C.K., Houck, P.M., Uyeki, T.M., Peiris, J.S. & Leung, G.M. 2010. Viral shedding and
clinical illness in naturally acquired influenza virus infections. The
Journal of Infectious Diseases 201(10): 1509-1516.
Lugovtsev, V.Y., Melnyk,
D. & Weir, J.P. 2013. Heterogeneity of the MDCK cell line
and its applicability for influenza virus research. PLoS One 8(9):
e75014.
Matsuoka, Y., Matsumae,
H., Katoh, M., Eisfeld, A.J., Neumann, G., Hase, T., Ghosh, S., Shoemaker,
J.E., Lopes, T.J., Watanabe, T., Watanabe, S., Fukuyama, S., Kitano, H. &
Kawaoka, Y. 2013. A comprehensive map of the influenza A virus replication cycle. BMC Systems Biology 7: 97.
Murakami,
S., Horimoto, T., Ito, M., Takano, R., Katsura, H., Shimojima, M. &
Kawaoka, Y. 2012. Enhanced growth of influenza vaccine seed viruses in Vero cells mediated by
broadening the optimal pH range for virus membrane fusion. Virology Journal 86(3):
1405-1410.
Murakami, S., Horimoto,
T., Mai Le, Q., Nidom, C.A., Chen, H., Muramoto, Y., Yamada, S., Iwasa, A.,
Iwatsuki-Horimoto, K., Shimojima, M., Iwata, A. & Kawaoka, Y. 2008. Growth
determinants for H5N1 influenza vaccine seed viruses in MDCK cells. Virology
Journal 82(21): 10502-10509.
Nayak, D.P., Balogun,
R.A., Yamada, H., Zhou, Z.H. & Barman, S. 2009. Influenza
virus morphogenesis and budding. Virus Research 143(2): 147-161.
Nerome,
K., Kumihashi, H., Nerome, R., Hiromoto, Y., Yokota, Y., Ueda, R., Omoe, K.
& Chiba, M. 1999. Evaluation of immune responses to inactivated influenza
vaccines prepared in embryonated chicken eggs and MDCK cells in a mouse model. Developments
in Biological Standardization 98: 53-63.
Pan, S.C., Kung, H.C.,
Kao, T.M., Wu, H., Dong, S.X., Hu, M.H., Chou, A.H., Chong, P., Hsieh, S.M.
& Chang, S.C. 2013. The Madin-Darby canine kidney cell culture derived
influenza A/H5N1 vaccine: A phase I trial in Taiwan. Journal of
Microbiology, Immunology and Infection 46(6): 448-455.
Reed, L.J. & Muench,
H. 1938. A simple method of estimating fifty per cent
endpoints. American Journal of Epidemiology 27(3): 493-497.
Seitz,
C., Frensing, T., Hoper, D., Kochs, G. & Reichl, U. 2010. High yields of
influenza A virus in Madin-Darby canine kidney cells
are promoted by an insufficient interferon-induced antiviral state. Journal
of General Virology 91(Pt 7): 1754-1763.
Sonnberg,
S., Webby, R.J. & Webster, R.G. 2013. Natural history of
highly pathogenic avian influenza H5N1. Virus Research 178(1):
63-77.
Subbarao, K. &
Matsuoka, Y. 2013. The prospects and challenges of universal
vaccines for influenza. Trends in Microbiology 21(7): 350-358.
Wanasawaeng,
W., Bunpapong, N., Leelamanit, W. & Thanawongnuwech, R. 2009. Growth
characteristics of the H5N1 avian influenza virus in chicken embryonic eggs and
MDCK cells. Thai Journal of Veterinary Medicine 39(3): 281-286.
Whittaker, G.R. 2001.
Intracellular trafficking of influenza virus: Clinical implications for
molecular medicine. Expert Reviews in Molecular Medicine 3(5): 1-13.
WHO. 2005. WHO
Guidance on Development of Influenza Vaccine Reference Viruses by Reverse
Genetics. Geneva: World Health Organisation. http://www.who.int/csr/
resources/publications/influenza/WHO_CDS_CSR_ GIP_2005_6.pdf. Accessed
on 30 August 2015.
Youil, R., Su, Q., Toner, T.J., Szymkowiak, C., Kwan, W.S.,
Rubin, B., Petrukhin, L., Kiseleva, I., Shaw, A.R. & Distefano, D. 2004. Comparative study of influenza virus replication in Vero and MDCK
cell lines. Journal of Virological Methods 120(1): 23-31.
*Corresponding author; email: yapweiboon@ukm.edu.my |