Sains Malaysiana 45(5)(2016): 787–793

 

Replication of a Malaysian Strain Avian Influenza A Virus H5N1 in Madin-Darby Canine Kidney and African Green Monkey Kidney Cells

(Replikasi Virus Influenza Avian A Jenis H5N1 dalam Sel Ginjal Kanin Madin-Darby dan Monyet Hijau Afrika)

 

 

TOONG SENG TAN1, SHARIFAH SYED HASSAN2 & WEI BOON YAP1*

 

1Biomedical Science Programme, School of Diagnostic and Applied Health Sciences, Faculty of Health Science, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia

 

2School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan

47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia

 

Received: 1 September 2015/Accepted: 17 November 2015

 

ABSTRACT

The use of cell lines such as Madin-Darby Canine Kidney (MDCK) and African Green Monkey Kidney (Vero) cells in influenza vaccine production is much advocated presently as a safer alternative to chicken embryonated eggs. It is thus essential to understand the influenza virus replication patterns in these cell lines prior to utilizing them in vaccine production. The infectivity of avian influenza A virus (A/Chicken/Malaysia/5858/2004) H5N1 in MDCK and Vero cell lines was first assessed by comparing the cytopathic effect (CPE) caused by the virus infection. The viral loads in both of the infected media and cells were also compared. The results showed that both of the MDCK and Vero cells began to exhibit significant CPE (p<0.05) after 48 h post-infection (h p.i). The MDCK cell line was more susceptible to the virus infection compared to Vero cell line throughout the incubation period. A higher viral load was also detected in the host cells compared to their respective culturing media. Interestingly, after reaching its maximum titer at 48 h p.i, the viral load in MDCK cells declined meanwhile the viral load in Vero cells increased gradually and peaked at 120 h p.i. Overall, both cell lines support efficient H5N1 virus replication. While the peak viral loads measured in the two cell lines did not differ much, a more rapid replication was observed in the infected MDCK samples. The finding showed that MDCK cell line might serve as a more time-saving and cost-effective cell culture-based system compared to Vero cell line for influenza vaccine production.

 

Keywords: Cytopathic effect; H5N1; MDCK; Vero; viral load

 

ABSTRAK

Penggunaan kultur sel seperti sel ginjal kanin Madin-Darby (MDCK) dan monyet hijau Afrika (Vero) dalam penghasilan vaksin influenza adalah lebih selamat berbanding telur ayam berembrio yang disarankan pada masa ini. Maka, adalah penting untuk kita memahami corak replikasi virus influenza dalam sel-sel tersebut sebelum digunakan dalam penghasilan vaksin. Keboleh-jangkitan virus influenza jenis H5N1 (A/Chicken/Malaysia/5858/2004) dalam sel MDCK dan Vero dinilai dengan membandingkan kesan sitopatik (CPE) yang diakibatkan oleh jangkitan virus influenza. Titer virus dalam media dan sel terjangkit turut dibandingkan. Hasil kajian menunjukkan kedua-dua sel MDCK dan Vero mula mempamerkan CPE yang signifikan (p < 0.05) selepas 48 jam pasca-infeksi (h p.i). Sel MDCK adalah lebih rentan kepada jangkitan virus sepanjang tempoh eraman virus berbanding dengan sel Vero. Titer virus yang lebih tinggi diperoleh dalam sel perumah terjangkit berbanding dengan media kultur. Selepas mencapai titer maksimum pada 48 h p.i, titer virus dalam sel MDCK menurun manakala titer virus dalam sel Vero kekal meningkat secara perlahan dan memuncak pada 120 h p.i. Secara keseluruhan, kedua-dua sel perumah didapati mampu menyokong replikasi virus H5N1 dengan cekap. Meskipun titer virus maksimum yang dicapai antara kedua-dua sel perumah tidak berbeza, replikasi yang lebih pantas diperhatikan dalam sel MDCK. Hal ini mencadangkan penggunaan sel MDCK dalam penghasilan vaksin influenza adalah lebih jimat daripada segi masa dan kos berbanding dengan sel Vero.

 

Kata kunci: H5N1; kesan sitopatik; MDCK; titer virus; Vero

REFERENCES

 

Abdoli, A., Soleimanjahi, H., Tavassoti Kheiri, M., Jamali, A. & Jamaati, A. 2013. Determining influenza virus shedding at different time points in Madin-Darby canine kidney cell line. Cell Journal 15(2): 130-135.

Balasubramaniam, V.R., Hassan, S.S., Omar, A.R., Mohamed, M., Noor, S.M., Mohamed, R. & Othman, I. 2011. Cellular transcripts regulated during infections with highly pathogenic H5N1 avian influenza virus in 3 host systems. Virology Journal 8(196): 8-196.

Brühl, P., Kerschbaum, A., Kistner, O., Barrett, N., Dorner, F. & Gerenčer, M. 2000. Humoral and cell-mediated immunity to Vero cell-derived influenza vaccine. Vaccine 19(9-10): 1149-1158.

De Jong, M.D., Simmons, C.P., Thanh, T.T., Hien, V.M., Smith, G.J., Chau, T.N., Hoang, D.M., Chau, N.V., Khanh, T.H., Dong, V.C., Qui, P.T., Cam, B.V., Ha Do, Q., Guan, Y., Peiris, J.S., Chinh, N.T., Hien, T.T. & Farrar, J. 2006. Fatal outcome of human influenza A (H5N1) is associated with high viral load and hypercytokinemia. Nature Medicine 12(10): 1203-1207.

Donis, R.O. 2014. Performance characteristics of qualified cell lines for isolation and propagation of influenza viruses for vaccine manufacturing. Vaccine 32(48): 6583-6590.

El Saleeby, C.M., Bush, A.J., Harrison, L.M., Aitken, J.A. & Devincenzo, J.P. 2011. Respiratory syncytial virus load, viral dynamics, and disease severity in previously healthy naturally infected children. The Journal of Infectious Diseases 204(7): 996-1002.

Genzel, Y., Dietzsch, C., Rapp, E., Schwarzer, J. & Reichl, U. 2010. MDCK and Vero cells for influenza virus vaccine production: A one-to-one comparison up to lab-scale bioreactor cultivation. Applied Microbiology and Biotechnology 88(2): 461-475.

Govorkova, E.A., Kaverin, N.V., Gubareva, L.V., Meignier, B. & Webster, R.G. 1995. Replication of influenza A viruses in a green monkey kidney continuous cell line (Vero). The Journal of Infectious Diseases 172(1): 250-253.

Hamilton, S.B., Wyatt, D.E., Wahlgren, B.T., O’dowd, M.K., Morrissey, J.M., Daniels, D.E. & Lednicky, J.A. 2011. Higher titers of some H5N1 and recent human H1N1 and H3N2 influenza viruses in Mv1 Lu vs. MDCK cells. Virology Journal 8: 66.

Hinshaw, V.S., Olsen, C.W., Dybdahl-Sissoko, N. & Evans, D. 1994. Apoptosis: A mechanism of cell killing by influenza A and B viruses. Journal of Virology 68(6): 3667-3673.

Lau, L.L., Cowling, B.J., Fang, V.J., Chan, K.H., Lau, E.H., Lipsitch, M., Cheng, C.K., Houck, P.M., Uyeki, T.M., Peiris, J.S. & Leung, G.M. 2010. Viral shedding and clinical illness in naturally acquired influenza virus infections. The Journal of Infectious Diseases 201(10): 1509-1516.

Lugovtsev, V.Y., Melnyk, D. & Weir, J.P. 2013. Heterogeneity of the MDCK cell line and its applicability for influenza virus research. PLoS One 8(9): e75014.

Matsuoka, Y., Matsumae, H., Katoh, M., Eisfeld, A.J., Neumann, G., Hase, T., Ghosh, S., Shoemaker, J.E., Lopes, T.J., Watanabe, T., Watanabe, S., Fukuyama, S., Kitano, H. & Kawaoka, Y. 2013. A comprehensive map of the influenza A virus replication cycle. BMC Systems Biology 7: 97.

Murakami, S., Horimoto, T., Ito, M., Takano, R., Katsura, H., Shimojima, M. & Kawaoka, Y. 2012. Enhanced growth of influenza vaccine seed viruses in Vero cells mediated by broadening the optimal pH range for virus membrane fusion. Virology Journal 86(3): 1405-1410.

Murakami, S., Horimoto, T., Mai Le, Q., Nidom, C.A., Chen, H., Muramoto, Y., Yamada, S., Iwasa, A., Iwatsuki-Horimoto, K., Shimojima, M., Iwata, A. & Kawaoka, Y. 2008. Growth determinants for H5N1 influenza vaccine seed viruses in MDCK cells. Virology Journal 82(21): 10502-10509.

Nayak, D.P., Balogun, R.A., Yamada, H., Zhou, Z.H. & Barman, S. 2009. Influenza virus morphogenesis and budding. Virus Research 143(2): 147-161.

Nerome, K., Kumihashi, H., Nerome, R., Hiromoto, Y., Yokota, Y., Ueda, R., Omoe, K. & Chiba, M. 1999. Evaluation of immune responses to inactivated influenza vaccines prepared in embryonated chicken eggs and MDCK cells in a mouse model. Developments in Biological Standardization 98: 53-63.

Pan, S.C., Kung, H.C., Kao, T.M., Wu, H., Dong, S.X., Hu, M.H., Chou, A.H., Chong, P., Hsieh, S.M. & Chang, S.C. 2013. The Madin-Darby canine kidney cell culture derived influenza A/H5N1 vaccine: A phase I trial in Taiwan. Journal of Microbiology, Immunology and Infection 46(6): 448-455.

Reed, L.J. & Muench, H. 1938. A simple method of estimating fifty per cent endpoints. American Journal of Epidemiology 27(3): 493-497.

Seitz, C., Frensing, T., Hoper, D., Kochs, G. & Reichl, U. 2010. High yields of influenza A virus in Madin-Darby canine kidney cells are promoted by an insufficient interferon-induced antiviral state. Journal of General Virology 91(Pt 7): 1754-1763.

Sonnberg, S., Webby, R.J. & Webster, R.G. 2013. Natural history of highly pathogenic avian influenza H5N1. Virus Research 178(1): 63-77.

Subbarao, K. & Matsuoka, Y. 2013. The prospects and challenges of universal vaccines for influenza. Trends in Microbiology 21(7): 350-358.

Wanasawaeng, W., Bunpapong, N., Leelamanit, W. & Thanawongnuwech, R. 2009. Growth characteristics of the H5N1 avian influenza virus in chicken embryonic eggs and MDCK cells. Thai Journal of Veterinary Medicine 39(3): 281-286.

Whittaker, G.R. 2001. Intracellular trafficking of influenza virus: Clinical implications for molecular medicine. Expert Reviews in Molecular Medicine 3(5): 1-13.

WHO. 2005. WHO Guidance on Development of Influenza Vaccine Reference Viruses by Reverse Genetics. Geneva: World Health Organisation. http://www.who.int/csr/ resources/publications/influenza/WHO_CDS_CSR_ GIP_2005_6.pdf. Accessed on 30 August 2015.

Youil, R., Su, Q., Toner, T.J., Szymkowiak, C., Kwan, W.S., Rubin, B., Petrukhin, L., Kiseleva, I., Shaw, A.R. & Distefano, D. 2004. Comparative study of influenza virus replication in Vero and MDCK cell lines. Journal of Virological Methods 120(1): 23-31.

 

 

*Corresponding author; email: yapweiboon@ukm.edu.my

 

 

previous