Sains Malaysiana 45(5)(2016): 811–815

 

Rapid Screening Method for Isolation of Glycerol-consuming Bacteria for Ethanol Production

(Kaedah Saringan Pesat untuk Pengasingan Bakteria Penggunaan-Gliserol untuk

Penghasilan Etanol)

 

SHERIL NORLIANA SUHAIMI1, NUR AMELIA AZREEN ADNAN1, PHANG LAI YEE1*, SURAINI ABD-AZIZ1 & TOSHINARI MAEDA2

 

1Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences

Universiti Putra Malaysia, 43400 Serdang, Selangor Darul Ehsan, Malaysia

 

2Department of Biological Functions and Engineering, Graduate School of Life Sciences

and Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu-ku, Kitakyushu-shi, Fukuoka 808-0196, Japan

 

Received: 25 September 2014/Accepted: 20 November 2015

 

ABSTRACT

Large numbers of glycerol-consuming bacteria are present in nature; hence bioconversion of glycerol into biofuel which is bioethanol is one of the interests. The effective screening procedure is needed to screen and isolate broad ranges of bacteria from environment. The screening method was modified based on enzymatic oxidation of ethanol, which is correlated to reduction of 2,6-dichlorophenol-indophenol dye that resulted in the formation of yellow zone. Approximately 300 colonies were able to grow on minimal media using glycerol as sole carbon. Only about 70 isolates showed positive result when using the modified ethanol production assay after pre-screening stage. The formation of decolourized zone was apparent using modified assay containing 5 mL/L of 0.05M 2,6-dichlorophenol-indophenol, 10 mL of reaction mixture and 500 μl/L of enzyme, respectively. The ethanol production capability of the isolates was further proven by anaerobic fermentation as a quantitative method. This modified method is applicable in screening for ethanol producer from glycerol as carbon source allows rapid and more bacteria can be screened.

 

Keywords: 2,6-dichlorophenol-indophenol; ethanol production; glycerol-utilization; screening and isolation

 

ABSTRACT

Bio-penukaran gliserol kepada bioetanol menjadi satu kepentingan kerana sejumlah besar bakteria di dalam alam sekitar didapati berupaya untuk menggunakan gliserol. Oleh yang demikian, kaedah penyaringan yang berkesan diperlukan untuk menyaring dan memencilkan bakteria dalam jumlah yang banyak dari alam sekitar. Kaedah penyaringan telah diubah suai berdasarkan pengoksidaan enzim etanol yang berkait rapat dengan pemudaran pewarna 2,6-diklorofenol-indofenol dan seterusnya menghasilkan zon kuning. Kira-kira 300 koloni bakteria didapati dapat hidup apabila media minimum digunakan dengan gliserol sebagai sumber karbon utama. Hanya 70 daripada koloni tersebut menunjukkan keputusan positif daripada kaedah analisis etanol yang diubah suai pada peringkat pra-saringan. Pembentukan zon warna yang pudar dapat dilihat dengan jelas apabila menggunakan komposisi yang telah diubah suai iaitu 5 mL/L 0.05M 2,6-diklorofenol-indofenol, 10 mL campuran tindak balas dan 500 μl/L enzim. Keupayaan bakteria pencilan tempatan tersebut dibuktikan dengan fermentasi anerobik sebagai kaedah kuantitatif. Kaedah yang diubah suai ini boleh diguna pakai untuk menyaring lebih banyak bakteria yang berpotensi sebagai pengeluar etanol daripada gliserol sebagai sumber karbon dengan lebih cepat.

 

Kata kunci: Menyaring dan memencilkan; penggunaan gliserol; penghasilan etanol; 2,6 diklorofenol-indofenol

REFERENCES

 

Ashby, R.D., Solaiman, D.K.Y. & Foglia, T.A. 2004. Bacterial poly(hydroxylalkanoate) polymer production from the biodiesel co-product stream. Journal of Polymers and the Environment 12: 105-112.

Bai, F.W., Anderson, W.A. & Moo-Young, M. 2008. Ethanol fermentation technologies from sugar and starch feedstocks. Biotechnology Advances 26: 89-105.

Barbirato, F., Chedaille, D. & Bories, A. 1997. Propionic acid fermentation from glycerol: Comparison with conventional substrates. Applied Microbiology and Biotechnology 47: 441-446.

Bauer, R., Katsikis, N., Varga, S. & Hekmat, D. 2005. Study of the inhibitory effect of the product dihydroxyacetone on Gluconobacter oxydans in a semi-continuous two-stage repeated fed batch process. Bioprocess and Biosystem Engineering 5: 37-43.

Biebl, H. 2001. Fermentation of glycerol by Clostridium pasteurianum - batch and continuous culture studies. Journal of Industrial Microbiology and Biotechnology 27: 18-26.

Biebl, H., Marten, M., Hippe, H. & Deckwer, W.D. 1992. Glycerol conversion to 1,3-propanediol by newly isolated clostridia. Applied Microbiology Biotech 36: 592-597.

Bories, A., Claret, C. & Soucaille, P. 1991. Kinetic study and optimization of the production of dihydroxyacetone from glycerol using Gluconobacter oxydans. Process Biochemistry 26: 243-248.

Claret, C., Salmon, J.M., Romieu, C. & Bories, A. 1999. Physiology of Gluconobacter oxydans during dihydroxyacetone production from glycerol. Applied Environtmental and Microbiology 41: 359-365.

Dharmadi, Y., Murarka, A. & Gonzalez, R. 2006. Anaerobic fermentation of glycerol by Escherichia coli: A new platform for metabolic engineering. Biotechnology and Bioengineering 94: 821-829.

Fernandez, A., Luque de Castro, M.D. & Valcarcel, M. 1987. Voltammetric – enzymatic determination of ethanol in whole blood by flow injection analysis. Fresenius Journal of Analytical Chemistry 327: 552-554.

Hao, J., Li, R., Zheng, Z., Liu, H. & Liu, D. 2008. Isolation and characterization of microorganisms able to produce 1,3-propanediol under aerobic conditions. World Journal of Microbiology and Biotechnology 24: 1731-1740.

Himmi, E.H., Bories, A., Boussaid, A. & Hassani, L. 2000. Propionic acid fermentation of glycerol and glucose by Propionicbacterium acidipropionici and Propionibacterium freundenreichii spp. Shermani. Applied Microbiology and Biotechnology 53: 435-440.

Hong, A.A., Cheng, K.K., Peng, F., Zhou, S., Sun, Y., Liu, C.M. & Liu, D.H. 2009. Strain isolation and optimization of process parameters for bioconversion of glycerol to lactic acid. Journal of Chemical Technology and Biotechnology 84: 1576-1581.

Ibrahim, M.H.A. & Steinbuchel, A. 2009. Zobellella denitrificans strain MW1, a newly isolated bacterium suitable for poly(3- hydroxybutyrate) production from glycerol. Journal of Applied Microbiology 108: 214-225.

Imandi, S.B., Bandaru, V.V.R., Somalanka, S.R. & Garapati, H.R. 2007. Optimization of medium constituents for the production of citric acid from byproduct glycerol using Doehlert experimental design. Enzyme Microbiology Technology 40: 1367-1372.

Ito, T., Nakashimada, Y., Senba, K., Matsui, T. & Nishio, N. 2005. Hydrogen and ethanol production from glycerol-containing wastes discharged after biodiesel manufacturing process. Journal of Bioscience and Bioengineering 100: 260-265.

Jacobs, C.J., Prior, B.A. & de Kock, M.J. 1983. A rapid screening method to detect ethanol production by microorganisms. Journal of Microbiological Methods 1: 339-342.

Jarvis, G.N., Moore, E.R.B. & Thiele, J.H. 1997. Formate and ethanol are the major products of glycerol fermentation produced by a Klebsiella planticola strain isolated from red deer. Journal of Applied Microbiology 83: 166-174.

Jung, J.Y., Yun, H.S., Lee, J. & Oh, M.K. 2011. Production of 1,2-propanediol from glycerol in Saccharomyces cerevisae. Journal of Microbiology and Biotechnology 21(8): 846-853.

Lee, P.C., Lee, W.G., Lee, S.Y. & Chang, H.N. 2001. Succinic acid production with reduced by-product formation in the fermentation of Anaerobiospirillum succiniciproducens using glycerol as a carbon source. Biotechnology and Bioengineering 72: 41-48.

Lee, S.Y., Hong, S.H., Lee, S.H. & Park, S.J. 2004. Fermentative production of chemicals that can be used for polymer synthesis. Macromolecular Bioscience 4: 157-164.

Nakas, J.P., Schaedle, M., Parkinson, C.M., Coonley, C.E. & Tanenbaum, S.W. 1983. System development of linked-fermentation production of solvents from algal biomass. Applied and Environmental Microbiology 46: 1017-1023.

Papanikolaou, S., Muniglia, L., Chevalot, I., Aggelis, G. & Marc, I. 2002. Yarrowia lipolytica as a potential producer of citric acid from raw glycerol. Journal of Applied Microbiology 92: 737-744.

Papanikolaou, S., ruiz-Sanchez, P., Pariset, B., Blanchard, F. & Fick, M. 2000. High production of 1,3-propanediol from industrial glycerol by a newly isolated Clostridium butyricum strain. Journal of Biotechnology 77: 191-208.

Pimentel, D. 2009. Biofuel food disasters and cellulosic ethanol problems. Bulletin of Science, Technology & Society 29(3): 105-212.

Smith, M.D. & Olson, C.L. 1975. Differential amperometric determination of alcohol in blood or urine using alcohol dehydrogenase. Analytical Chemistry 47(7): 1074-1077.

Willke, T.H. & Vorlop, K.D. 2004. Industrial bioconversion of renewable resources as an alternative to conventional chemistry. Applied Microbiology and Biotechnology 66: 131-142.

Zhang, G., Wu, Y., Qian, X. & Meng, Q. 2005. Biodegradation of crude oil by Pseudomonas aeruginosa in the presence of rhamnolipids. Journal of Zhejiang University Science 6B: 725-730.

 

*Corresponding author; email: phanglaiyee@upm.edu.my

 

 

previous