Sains Malaysiana 45(5)(2016): 825–831

 

Synthesis, Characterization and Electrical Properties of N-([4-(aminophenylethynyl)toluene]-N'-(cinnamoyl)thiourea (AECT) as Single Molecular Conductive Film

(Sintesis, Pencirian dan Sifat Elektrik bagi N-([4-(aminofenilethynyl) toluena]-N'-(cinnamoyl) tiourea (AECT) sebagai Filem Konduktif Molekul Tunggal)

 

 

WAN M. KHAIRUL1*, NIZAMUDDIN TUKIMIN1 & RAFIZAH RAHAMATHULLAH1 2

 

1School of Fundamental Science, Universiti Malaysia Terengganu,21030 Kuala Terengganu, Terengganu, Malaysia

 

2Faculty of Engineering Technology, Universiti Malaysia Perlis, 02100 Padang Besar, Perlis

Malaysia

 

Received: 26 October 2015/Accepted: 25 November 2015

 

ABSTRACT

The exploitation of mixed moieties of conjugated acetylide and thiourea system as molecular wire candidates surprisingly unexplored in this distinctive area although the well-known rigid π-systems enhance the electronic field at some extend. Therefore, in the present research, interest has been focused on the design, synthesis, fabrication and evaluation of the performance of a new acetylide-thiourea, N-([4-(aminophenylethynyl)toluene]-N'-(cinnamoyl)thiourea (AECT) based on Donor (D)-π-Acceptor (A) system as an active layer in conductive film. The compounds were successfully characterized via infrared spectroscopy (IR), UV-visible absorption spectroscopy (UV-Vis), CHNS elemental analysis, 1H and 13C nuclear magnetic resonance spectroscopy (NMR), thermogravimetric analysis (TGA) as well as cyclic voltammetry (CV) analysis. The investigation of its potential as dopant system in conductive film was fabricated on ITO substrate prior to the evaluation of its conductivity properties which was carried out by Four Point Probe. The findings from the conductivity analysis showed that the prepared film, AECT/ITO performed better and exhibited increasing conductivity up to 0.2044 Scm-1 under maximum light intensity of 150 Wm-2. This proposed molecular framework gives an ideal indication to act as conductive film and has opened wide potential for application in organic electronic devices.

 

Keywords: Acetylide; conductive film; conductivity; thiourea

 

ABSTRAK

Eksploitasi moiti tercampur sistem molekul asetilida dan tiourea terkonjugat sebagai calon wayar molekul masih belum diterokai sepenuhnya dalam bidang ini walaupun sistem-π utuh yang dikenali ramai dapat meningkatkan perkembangan dalam bidang elektronik pada tahap tertentu. Oleh yang demikian, dalam kajian ini, perhatian difokuskan kepada reka bentuk, sintesis, fabrikasi dan penilaian prestasi bagi terbitan asetilida-tiourea yang baru, N-([4-(aminofenilethynyl)toluena]-N'-(cinnamoyl)tiourea (AECT) menggunakan sistem penderma (D)-π-penerima (A) sebagai lapisan aktif dalam filem konduktif. Setiap sebatian telah berjaya dicirikan melalui sinar inframerah (IR), analisis ultra-lembayung sinar nampak (UV-Vis), analisis unsur CHNS, 1H dan 13C multi resonan magnetik nukleus (NMR), analisis termogravimetri (TGA) dan juga analisis voltametri kitaran (CV). Penyelidikan tentang keupayaannya sebagai sistem dopan pada filem konduktif telah dilakukan dengan sebatian ini telah difabrikasikan pada substrat ITO sebelum ciri-ciri kekonduksian dinilai menggunakan Penduga Empat Titik. Daripada kajian kekonduksian, ia menunjukkan lapisan filem nipis, AECT/ITO memberikan prestasi lebih baik dengan peningkatan nilai kekonduksian, 0.2044 Scm-1 di bawah keamatan cahaya maksimum iaitu 150 Wm-2. Kerangka molekul yang dicadangkan ini dapat memberikan petunjuk yang ideal untuk bertindak sebagai filem konduktif dan membuka ruang yang luas untuk diaplikasikan sebagai peranti elektronik organik.

 

Kata kunci: Asetilida; filem konduktif; kekonduksian; tiourea

REFERENCES

Aly, A.A., Ahmed, E.K., El-Mokadem, K.M. & Hegazy, M.E.A.F. 2007. Update survey on aroyl substituted thioureas and their applications. Journal of Sulfur Chemistry 28: 73-93.

Arslan, N.B., Kazak, C. & Ayd?n, F. 2012. N-(4-Nitrobenzoyl)-N′-(1, 5-dimethyl-3-oxo-2-phenyl-1H-3 (2H)-pyrazolyl)-thiourea hydrate: Synthesis, spectroscopic characterization, X-ray structure and DFT studies. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 89: 30-38.

Ataol, Ç.Y. & Ekici, Ö. 2014. Experimental and theoretical studies of (FTIR, FT-NMR, UV–Visible, X-ray and DFT) 2-(4-Allyl-5-pyridin-4-yl-4H-[1, 2, 4] triazol-3-ylsulfanyl)- 1-(3-methyl-3-phenyl-cyclobutyl)-ethanone. Journal of Molecular Structure 1065: 1-9.

Bayat, Z. & Mahdizadeh, S.J. 2011. Design of nanoscale molecular wire based on 3, 6-Diphenyl-1, 2, 4, 5-Tetrazine and effect of external electric field on electron transfer in conjugated molecular wire. Physica E: Low-dimensional Systems and Nanostructures 43: 1569-1575.

Cheng, Y.J., Yang, S.H. & Hsu, C.S. 2009. Synthesis of conjugated polymers for organic solar cell applications. Chemical reviews 109: 5868-5923.

Daud, A.I., Khairul, W.M., Zuki, H.M. & Kubulat, K. 2015. Aerobic synthetic approach and characterisation of some acetylide–thiourea derivatives for the detection of carbon monoxide (CO) gas. Journal of Molecular Structure 1093: 172-178.

Daud, A.I., Khairul, W.M., Mohamed Zuki, H. & KuBulat, K. 2014. Synthesis and characterization of N-(4- Aminophenylethynylbenzonitrile)-N′-(1-naphthoyl) thiourea as single molecular chemosensor for carbon monoxide sensing. Journal of Sulfur Chemistry 35: 691-699.

Douglass, I.B. & Dains, F.B. 1934. Some derivatives of Benzoyl and Furoyl Isothiocyanates and their use in synthesizing heterocyclic compounds. Journal of the American Chemical Society 56: 719-721.

Estévez-Hernández, O., Otazo-Sánchez, E., De Cisneros, J.H.H., Naranjo-Rodríguez, I. & Reguera, E. 2005. A Raman and infrared study of 1-furoyl-3-monosubstituted and 3, 3-disubstituted thioureas. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 62: 964-971.

Granqvist, C.G. & Hultåker, A. 2002. Transparent and conducting ITO films: New developments and applications. Thin Solid Films 411: 1-5.

Grigoras, M., Ivan, T., Vacareanu, L., Catargiu, A.M. & Tigoianu, R. 2014. Synthesis and optoelectronic characterization of some triphenylamine-based compounds containing strong acceptor substituents. Journal of Luminescence 153: 5-11.

Günes, S., Neugebauer, H. & Sariciftci, N.S. 2007. Conjugated polymer-based organic solar cells. Chemical Reviews 107: 1324-1338.

Guo, C., Zhang, Z.H., Kwong, G., Pan, J.B., Deng, X.Q. & Zhang, J.J. 2012. Enormously enhanced rectifying performances by modification of carbon chains for D−σ–A molecular devices. The Journal of Physical Chemistry C 116: 12900-12905.

Hoeben, F.J., Jonkheijm, P., Meijer, E.W. & Schenning, A.P. 2005. About supramolecular assemblies of π-conjugated systems. Chemical Reviews 105: 1491-1546.

Horowitz, G. 2004. Organic thin film transistors: From theory to real devices. Journal of Materials Research 19: 1946-1962.

Jasman, S.M., Khairul, W.M., Tagg, T., KuBulat, K., Rahamathullah, R., Arshad, S., Razak, I.A. & Tahir, M.I.M. 2015. Synthesis, crystal structure and electrical studies of Naphthoyl-Thiourea as potential organic light emitting diode. Journal of Chemical Crystallography 45: 338-349.

Jennum, K. & Nielsen, M.B. 2013. Design and synthesis of organic molecules for molecular electronics. In Organic Synthesis and Molecular Engineering, edited by Nielsen, M.B. Hoboken, New Jersey: John Wiley & Sons, Inc. doi: 10.1002/9781118736449.ch3.

Karipcin, F., Atis, M., Sariboga, B., Celik, H. & Tas, M. 2013. Structural, spectral, optical and antimicrobial properties of synthesized 1-benzoyl-3-furan-2-ylmethyl-thiourea. Journal of Molecular Structure 1048: 69-77.

Khairul, W.M., Yusof, M.F., Rahamathullah, R., Daud, A.I., Jasman, S.M., Hasan, M.F.A., Salleh, H., Adli, H.K. & Tay, M.G. 2013. Single molecule thin film featuring disubstituted thiourea (TU) doped with chlorophyll as potential active layer in photovoltaic cell. Int. J. Electrochem. Sci 8: 8175-8190.

Koch, K.R. 2001. New chemistry with old ligands: N-alkyl-and N, N-dialkyl-N′-acyl (aroyl) thioureas in co-ordination, analytical and process chemistry of the platinum group metals. Coordination Chemistry Reviews 216: 473-488.

Lamba, V., Wilkinson, S.J. & Arora, C. 2011. Designing molecular devices by altering bond lengths. Journal of Molecular Modelling 17: 3251-3255.

Murphy, A.R. & Frechet, J.M. 2007. Organic semiconducting oligomers for use in thin film transistors. Chemical Reviews 107: 1066-1096.

Otazo-Sánchez, E., Ortiz-del-Toro, P., Estévez-Hernández, O., Pérez-Mar?n, L., Goicoechea, I., Beltran, A.C. & Villagómez- Ibarra, J.R. 2002. Aroylthioureas: New organic ionophores for heavy metal ion selective electrodes. A nuclear magnetic resonance study. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 58: 2281-2290.

Rahamathullah, R., Khairul, W.M., Ku Bulat, K. & Hussin, Z.M. 2015. Influence of curcumin as a natural photosensitizer in the conductive thin film of alkoxy cinnamoyl substituted thiourea. Main Group Chemistry 14: 185-198.

Rahamathullah, R., Khairul, W.M., Salleh, H., Adli, H.K., Isa, M.I.N. & Tay, M.G. 2013. Synthesis, characterization and electrochemical analysis of V-shaped disubstituted thiourea-chlorophyll thin film as active layer in organic solar cells. Int. J. Electrochem. Sci. 8: 3333-3348.

Saeed, A., Ashraf, S., White, J.M., Soria, D.B., Franca, C.A. & Erben, M.F. 2015a. Synthesis, X-ray crystal structure, thermal behavior and spectroscopic analysis of 1-(1-naphthoyl)- 3-(halo-phenyl)-thioureas complemented with quantum chemical calculations. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 150: 409-418.

Saeed, A., Khurshid, A., Bolte, M., Fantoni, A.C. & Erben, M.F. 2015b. Intra-and intermolecular hydrogen bonding and conformation in 1-acyl thioureas: An experimental and theoretical approach on 1-(2-chlorobenzoyl) thiourea. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 143: 59-66.

Saeed, A., Flörke, U. & Erben, M.F. 2014a. A review on the chemistry, coordination, structure and biological properties of 1-(acyl/aroyl)-3-(substituted) thioureas. Journal of Sulfur Chemistry 35: 318-355.

Saeed, A., Khurshid, A., Jasinski, J.P., Pozzi, C.G., Fantoni, A.C. & Erben, M.F. 2014b. Competing intramolecular N H O C hydrogen bonds and extended intermolecular network in 1-(4-chlorobenzoyl)-3-(2-methyl-4-oxopentan-2-yl) thiourea analyzed by experimental and theoretical methods. Chemical Physics 431: 39-46.

Saeed, A., Erben, M.F. & Bolte, M. 2013. Synthesis, structural and vibrational properties of 1-(adamantane-1-carbonyl)-3- halophenyl thioureas. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 102: 408-413.

Saeed, S., Rashid, N., Jones, P.G., Ali, M. & Hussain, R. 2010. Synthesis, characterization and biological evaluation of some thiourea derivatives bearing benzothiazole moiety as potential antimicrobial and anticancer agents. European Journal of Medicinal Chemistry 45: 1323-1331.

Stiegman, A.E., Graham, E., Perry, K.J., Khundkar, L.R., Cheng, L.T. & Perry, J.W. 1991. The electronic structure and second-order nonlinear optical properties of donor-acceptor acetylenes: A detailed investigation of structure-property relationships. Journal of the American Chemical Society 113: 7658-7666.

Weiqun, Z., Kuisheng, L., Yong, Z. & Lu, L. 2003. Structural and spectral studies of N-(4-chloro) benzoyl-N′-2-tolylthiourea. Journal of Molecular Structure 657: 215-223.

 

 

*Corresponding author; email: wmkhairul@umt.edu.my

 

 

previous