Sains Malaysiana 45(5)(2016): 825–831
Synthesis,
Characterization and Electrical Properties of N-([4-(aminophenylethynyl)toluene]-N'-(cinnamoyl)thiourea
(AECT) as Single Molecular Conductive Film
(Sintesis,
Pencirian dan Sifat Elektrik bagi N-([4-(aminofenilethynyl)
toluena]-N'-(cinnamoyl) tiourea (AECT) sebagai Filem Konduktif Molekul
Tunggal)
WAN M. KHAIRUL1*,
NIZAMUDDIN TUKIMIN1 & RAFIZAH
RAHAMATHULLAH1
2
1School of Fundamental Science, Universiti Malaysia
Terengganu,21030 Kuala Terengganu, Terengganu, Malaysia
2Faculty of Engineering Technology, Universiti Malaysia
Perlis, 02100 Padang Besar, Perlis
Malaysia
Received: 26 October 2015/Accepted: 25
November 2015
ABSTRACT
The exploitation of mixed moieties
of conjugated acetylide and thiourea system as molecular wire candidates
surprisingly unexplored in this distinctive area although the well-known
rigid π-systems enhance the electronic field at some extend.
Therefore, in the present research, interest has been focused on
the design, synthesis, fabrication and evaluation of the performance
of a new acetylide-thiourea, N-([4-(aminophenylethynyl)toluene]-N'-(cinnamoyl)thiourea
(AECT)
based on Donor (D)-π-Acceptor (A) system as an
active layer in conductive film. The compounds were successfully
characterized via infrared spectroscopy (IR), UV-visible absorption spectroscopy (UV-Vis),
CHNS
elemental analysis, 1H and 13C
nuclear magnetic resonance spectroscopy (NMR), thermogravimetric analysis
(TGA) as well as cyclic voltammetry (CV)
analysis. The investigation of its potential as dopant system in
conductive film was fabricated on ITO substrate prior to the evaluation
of its conductivity properties which was carried out by Four Point
Probe. The findings from the conductivity analysis showed that the
prepared film, AECT/ITO
performed better and exhibited increasing conductivity
up to 0.2044 Scm-1 under maximum light intensity of 150 Wm-2.
This proposed molecular framework gives an ideal indication to act
as conductive film and has opened wide potential for application
in organic electronic devices.
Keywords: Acetylide; conductive
film; conductivity; thiourea
ABSTRAK
Eksploitasi moiti tercampur sistem
molekul asetilida dan tiourea terkonjugat sebagai calon wayar molekul
masih belum diterokai sepenuhnya dalam bidang ini walaupun sistem-π
utuh yang dikenali ramai dapat meningkatkan perkembangan dalam bidang
elektronik pada tahap tertentu. Oleh yang demikian, dalam kajian
ini, perhatian difokuskan kepada reka bentuk, sintesis, fabrikasi
dan penilaian prestasi bagi terbitan asetilida-tiourea yang baru,
N-([4-(aminofenilethynyl)toluena]-N'-(cinnamoyl)tiourea (AECT)
menggunakan sistem penderma (D)-π-penerima (A)
sebagai lapisan aktif dalam filem konduktif. Setiap sebatian telah
berjaya dicirikan melalui sinar inframerah (IR), analisis ultra-lembayung sinar nampak
(UV-Vis), analisis unsur CHNS,
1H
dan 13C multi resonan magnetik nukleus (NMR),
analisis termogravimetri (TGA) dan juga analisis voltametri kitaran
(CV). Penyelidikan tentang keupayaannya sebagai sistem dopan
pada filem konduktif telah dilakukan dengan sebatian ini telah difabrikasikan
pada substrat ITO sebelum ciri-ciri kekonduksian
dinilai menggunakan Penduga Empat Titik. Daripada kajian kekonduksian,
ia menunjukkan lapisan filem nipis, AECT/ITO memberikan
prestasi lebih baik dengan peningkatan nilai kekonduksian, 0.2044
Scm-1
di bawah keamatan cahaya maksimum iaitu 150 Wm-2.
Kerangka molekul yang dicadangkan ini dapat memberikan petunjuk
yang ideal untuk bertindak sebagai filem konduktif dan membuka ruang
yang luas untuk diaplikasikan sebagai peranti elektronik organik.
Kata kunci: Asetilida; filem konduktif; kekonduksian; tiourea
REFERENCES
Aly, A.A.,
Ahmed, E.K., El-Mokadem, K.M. & Hegazy, M.E.A.F. 2007. Update survey on
aroyl substituted thioureas and their applications. Journal of Sulfur
Chemistry 28: 73-93.
Arslan,
N.B., Kazak, C. & Ayd?n, F. 2012. N-(4-Nitrobenzoyl)-N′-(1,
5-dimethyl-3-oxo-2-phenyl-1H-3 (2H)-pyrazolyl)-thiourea hydrate: Synthesis,
spectroscopic characterization, X-ray structure and DFT studies. Spectrochimica
Acta Part A: Molecular and Biomolecular Spectroscopy 89: 30-38.
Ataol, Ç.Y.
& Ekici, Ö. 2014. Experimental and theoretical studies of (FTIR, FT-NMR,
UV–Visible, X-ray and DFT) 2-(4-Allyl-5-pyridin-4-yl-4H-[1, 2, 4]
triazol-3-ylsulfanyl)- 1-(3-methyl-3-phenyl-cyclobutyl)-ethanone. Journal of
Molecular Structure 1065: 1-9.
Bayat, Z.
& Mahdizadeh, S.J. 2011. Design of nanoscale molecular wire based on 3,
6-Diphenyl-1, 2, 4, 5-Tetrazine and effect of external electric field on
electron transfer in conjugated molecular wire. Physica E: Low-dimensional
Systems and Nanostructures 43: 1569-1575.
Cheng, Y.J.,
Yang, S.H. & Hsu, C.S. 2009. Synthesis of conjugated polymers for organic
solar cell applications. Chemical reviews 109: 5868-5923.
Daud, A.I.,
Khairul, W.M., Zuki, H.M. & Kubulat, K. 2015. Aerobic synthetic approach
and characterisation of some acetylide–thiourea derivatives for the
detection of carbon monoxide (CO) gas. Journal of Molecular Structure 1093:
172-178.
Daud, A.I.,
Khairul, W.M., Mohamed Zuki, H. & KuBulat, K. 2014. Synthesis and
characterization of N-(4- Aminophenylethynylbenzonitrile)-N′-(1-naphthoyl)
thiourea as single molecular chemosensor for carbon monoxide sensing. Journal
of Sulfur Chemistry 35: 691-699.
Douglass,
I.B. & Dains, F.B. 1934. Some derivatives of Benzoyl and Furoyl
Isothiocyanates and their use in synthesizing heterocyclic compounds. Journal
of the American Chemical Society 56: 719-721.
Estévez-Hernández,
O., Otazo-Sánchez, E., De Cisneros, J.H.H., Naranjo-Rodríguez, I. &
Reguera, E. 2005. A Raman and infrared study of 1-furoyl-3-monosubstituted and
3, 3-disubstituted thioureas. Spectrochimica Acta Part A: Molecular and
Biomolecular Spectroscopy 62: 964-971.
Granqvist, C.G.
& Hultåker, A. 2002. Transparent and conducting ITO films: New developments
and applications. Thin Solid Films 411: 1-5.
Grigoras,
M., Ivan, T., Vacareanu, L., Catargiu, A.M. & Tigoianu, R. 2014. Synthesis
and optoelectronic characterization of some triphenylamine-based compounds
containing strong acceptor substituents. Journal of Luminescence 153:
5-11.
Günes, S.,
Neugebauer, H. & Sariciftci, N.S. 2007. Conjugated polymer-based organic
solar cells. Chemical Reviews 107: 1324-1338.
Guo, C.,
Zhang, Z.H., Kwong, G., Pan, J.B., Deng, X.Q. & Zhang, J.J. 2012.
Enormously enhanced rectifying performances by modification of carbon chains
for D−σ–A molecular devices. The Journal of Physical
Chemistry C 116: 12900-12905.
Hoeben,
F.J., Jonkheijm, P., Meijer, E.W. & Schenning, A.P. 2005. About
supramolecular assemblies of π-conjugated systems. Chemical Reviews 105:
1491-1546.
Horowitz, G.
2004. Organic thin film transistors: From theory to real devices. Journal of
Materials Research 19: 1946-1962.
Jasman, S.M., Khairul,
W.M., Tagg, T., KuBulat, K., Rahamathullah, R., Arshad, S., Razak, I.A. &
Tahir, M.I.M. 2015. Synthesis, crystal structure and electrical studies of Naphthoyl-Thiourea
as potential organic light emitting diode. Journal of Chemical Crystallography 45: 338-349.
Jennum, K. & Nielsen, M.B. 2013.
Design and synthesis of organic molecules for molecular electronics. In Organic
Synthesis and Molecular Engineering, edited by Nielsen, M.B. Hoboken, New
Jersey: John Wiley & Sons, Inc. doi: 10.1002/9781118736449.ch3.
Karipcin, F., Atis, M., Sariboga, B.,
Celik, H. & Tas, M. 2013. Structural, spectral, optical and antimicrobial
properties of synthesized 1-benzoyl-3-furan-2-ylmethyl-thiourea. Journal of
Molecular Structure 1048: 69-77.
Khairul, W.M., Yusof, M.F.,
Rahamathullah, R., Daud, A.I., Jasman, S.M., Hasan, M.F.A., Salleh, H., Adli,
H.K. & Tay, M.G. 2013. Single molecule thin film featuring disubstituted
thiourea (TU) doped with chlorophyll as potential active layer in photovoltaic
cell. Int. J. Electrochem. Sci 8: 8175-8190.
Koch, K.R. 2001. New chemistry with old
ligands: N-alkyl-and N, N-dialkyl-N′-acyl (aroyl) thioureas in
co-ordination, analytical and process chemistry of the platinum group metals. Coordination
Chemistry Reviews 216: 473-488.
Lamba, V., Wilkinson, S.J. & Arora,
C. 2011. Designing molecular devices by altering bond lengths. Journal of
Molecular Modelling 17: 3251-3255.
Murphy, A.R. & Frechet, J.M. 2007.
Organic semiconducting oligomers for use in thin film transistors. Chemical
Reviews 107: 1066-1096.
Otazo-Sánchez, E., Ortiz-del-Toro, P.,
Estévez-Hernández, O., Pérez-Mar?n, L., Goicoechea, I., Beltran, A.C. &
Villagómez- Ibarra, J.R. 2002. Aroylthioureas: New organic ionophores for heavy
metal ion selective electrodes. A nuclear magnetic resonance study. Spectrochimica
Acta Part A: Molecular and Biomolecular Spectroscopy 58: 2281-2290.
Rahamathullah, R., Khairul, W.M., Ku Bulat,
K. & Hussin, Z.M. 2015. Influence of curcumin as a natural photosensitizer
in the conductive thin film of alkoxy cinnamoyl substituted thiourea.
Main Group Chemistry 14: 185-198.
Rahamathullah, R., Khairul, W.M., Salleh,
H., Adli, H.K., Isa, M.I.N. & Tay, M.G. 2013. Synthesis, characterization
and electrochemical analysis of V-shaped disubstituted thiourea-chlorophyll
thin film as active layer in organic solar cells. Int. J. Electrochem.
Sci. 8: 3333-3348.
Saeed, A., Ashraf, S., White, J.M., Soria,
D.B., Franca, C.A. & Erben, M.F. 2015a. Synthesis, X-ray crystal
structure, thermal behavior and spectroscopic analysis of 1-(1-naphthoyl)-
3-(halo-phenyl)-thioureas complemented with quantum chemical calculations.
Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy
150: 409-418.
Saeed, A., Khurshid, A., Bolte, M.,
Fantoni, A.C. & Erben, M.F. 2015b. Intra-and intermolecular hydrogen
bonding and conformation in 1-acyl thioureas: An experimental and theoretical
approach on 1-(2-chlorobenzoyl) thiourea. Spectrochimica Acta Part A:
Molecular and Biomolecular Spectroscopy 143: 59-66.
Saeed, A., Flörke, U. & Erben,
M.F. 2014a. A review on the chemistry, coordination, structure and
biological properties of 1-(acyl/aroyl)-3-(substituted) thioureas.
Journal of Sulfur Chemistry 35: 318-355.
Saeed, A., Khurshid, A., Jasinski, J.P.,
Pozzi, C.G., Fantoni, A.C. & Erben, M.F. 2014b. Competing intramolecular
N H⋯ O C hydrogen bonds and extended intermolecular
network in 1-(4-chlorobenzoyl)-3-(2-methyl-4-oxopentan-2-yl) thiourea
analyzed by experimental and theoretical methods. Chemical Physics
431: 39-46.
Saeed, A., Erben, M.F. & Bolte, M.
2013. Synthesis, structural and vibrational properties of
1-(adamantane-1-carbonyl)-3- halophenyl thioureas. Spectrochimica Acta Part
A: Molecular and Biomolecular Spectroscopy 102: 408-413.
Saeed, S., Rashid, N., Jones, P.G., Ali,
M. & Hussain, R. 2010. Synthesis, characterization and biological
evaluation of some thiourea derivatives bearing benzothiazole moiety as
potential antimicrobial and anticancer agents. European Journal of Medicinal
Chemistry 45: 1323-1331.
Stiegman, A.E., Graham, E., Perry, K.J.,
Khundkar, L.R., Cheng, L.T. & Perry, J.W. 1991. The electronic structure
and second-order nonlinear optical properties of donor-acceptor acetylenes: A
detailed investigation of structure-property relationships. Journal of the
American Chemical Society 113: 7658-7666.
Weiqun, Z., Kuisheng, L., Yong, Z. &
Lu, L. 2003. Structural and spectral studies of N-(4-chloro)
benzoyl-N′-2-tolylthiourea. Journal of Molecular Structure 657:
215-223.
*Corresponding author; email: wmkhairul@umt.edu.my |