Sains Malaysiana 45(6)(2016): 955–962
Effects of Alkaline Combined with Ultrasonic Pretreatment
and Enzymatic Hydrolysis of Agricultural Wastes for High Reducing Sugar
Production
(Kesan Gabungan Alkali dengan Ultrasonik Prarawatan dan Hidrolisis
Enzim Sisa Pertanian untuk Penurunan Pengeluaran Gula yang Tinggi)
WAESARAT SOONTORNCHAIBOON1, SANG MOO KIM2 & RATCHAPOL PAWONGRAT1*
1Department of Liberal
Arts and Science, Kasetsart University, Nakhon Pathom 73140, Thailand
2Department of Marine
Food Science and Technology, Gangneung-Wonju National University
Gangneung 25457, Republic of Korea
Received: 10 February 2015/Accepted: 11 January 2016
ABSTRACT
The effects of six pretreatments of five agricultural wastes (corn
cob, pineapple waste, bagasse, rice straw and water hyacinth) on the chemical
composition and total reducing sugar yield were investigated. Six pretreatments
were: 1% NaOH with ultrasound for 60 min; 1% NaOH with ultrasound 100% duty; 2%
NaOH with ultrasound for 60 min; 2% NaOH with ultrasound 100% duty cycle; 1%
NaOH by standing in the oven at 60°C for 90 min; and 2% NaOH by standing in the oven at 60°C for
90 min. Among them, the highest cellulose content of 55.15% was obtained from
bagasse by pretreating with 1% NaOH with ultrasound 100% duty cycle. It
subsequently yielded the highest total reducing sugar of 36.21% (36.21 g
reducing sugar/100 g substrate). The lignin content of all samples
significantly decreased, but ultrasonic pretreatment increased the cellulose
content. However, the best pretreatment method for each sample was different.
Based on SEM analysis, the morphologies of all samples were
changed after pretreatment. In addition, the increase of enzyme loading from 250 to 550 CMC U/g biomass led to
more than 20% increase in the total reducing sugar. It was found that the
higher enzyme loading (700 CMC U/g dried biomass) did not improve
the total reducing sugar for all samples.
Keywords: Agricultural waste; alkaline; hydrolysate; pretreatment;
ultrasonic
ABSTRAK
Kesan enam prarawatan ke atas lima sisa
pertanian (tongkol jagung, sisa nanas, hampas tebu, jerami padi dan keladi
bunting) terhadap komposisi kimia dan jumlah hasil penurunan gula telah dikaji.
Enam prarawatan adalah: 1% NaOH dengan ultrabunyi untuk 60 min; 1% NaOH dengan
ultrabunyi tugas 100%; 2% NaOH dengan ultrabunyi untuk 60 min; 2% NaOH dengan
ultrabunyi kitar tugas 100%; 1% NaOH dengan dirian di dalam relau pada suhu 60°C selama 90 min; dan 2% NaOH dengan dirian
di dalam relau pada suhu 60°C selama 90 min. Antara semua, kandungan selulosa
tertinggi adalah 55.15% telah diperoleh daripada hampas tebu dengan prarawatan
1% NaOH dengan ultrabunyi kitar tugas 100%. Ia kemudiannya
menghasilkan jumlah penurunan gula yang paling tinggi sebanyak 36.21% (36.21 g
penurunan gula/100 g substrat). Kandungan lignin
daripada semua sampel menurun dengan ketara, tetapi rawatan awal ultrasonik
meningkatkan kandungan selulosa. Walau bagaimanapun,
kaedah rawatan awal yang terbaik bagi setiap sampel adalah berbeza. Berdasarkan analisis SEM, morfologi semua sampel
telah berubah selepas rawatan awal. Di samping itu, peningkatan muatan
enzim sebanyak 250-550 CMC U/g biojisim membawa kepada 20% peningkatan
dalam jumlah penurunan gula. Didapati bahawa pemuatan enzim
yang tinggi (700 CMC U/g biojisim kering) tidak
meningkatkan jumlah penurunan gula untuk semua sampel.
Kata kunci: Alkali; hidrolisat; prarawatan; sisa
pertanian; ultrasonic
REFERENCES
Binod, P.,
Satyanagalakshmi, K., Sindhu, R., Janu, K.U., Sukumaran, R.K. & Pandey, A.
2012. Short duration microwave
assisted pretreatment enhances the enzymatic saccharification and fermentable
sugar yield from sugarcane bagasse. Renewable Energy 37(1): 109-116.
Cao, W., Sun, C., Liu, R.,
Yin, R. & Wu, X. 2012. Comparison of the effects of five pretreatment
methods on enhancing the enzymatic digestibility and ethanol production from
sweet sorghum bagasse. Bioresource Technology 111: 215-221.
Chantasiri, S. & Chaiyopratum S. 2009. Water
hyacinth. http://www.tistr.or.th/t/publication/page_area_show_ bc.asp?i1=86&i2=27. Accessed 21 February 2009.
Chen, M., Xia, L. & Xue, P. 2006. Enzymatic hydrolysis of corncob and ethanol production from cellulosic
hydrolysate. International Biodeterioration and Biodegradation 59:
85-89.
Cheng, Y.S., Zheng, Y., Yu,
C.W., Dooley, T.M., Jenkins, B.M. & VanderGheynst, J.S. 2010. Evaluation of high solids
alkaline pretreatment of rice straw. Applied Biochemistry and
Biotechnology 162(6): 1768-1784.
Dacera, D.M. & Babel, S. 2007. Heavy metals
removal from contaminated sewage sludge by naturally fermented raw liquid from
pineapple wastes. Water Science and Technology 56(7): 145-152.
Department of Alternative Energy Development and
Efficiency, Thailand. 2010. Biomass Database Potential in Thailand.
http://weben.dede.go.th/webmax/content/biomass-database-potential-thailand.
Accessed January 3, 2016.
Eblaghi, M., Niakousari,
M., Sarshar, M. & Mesbahi, G.R. 2015. Combining ultrasound with mild alkaline solutions as an effective
pretreatment to boost the release of sugar trapped in sugarcane bagasse for
bioethanol production. Journal of Food Process
Engineering. doi:10.1111/jfpe.12220.
Filson, P.B. & Dawson-Andoh, B.E. 2009.
Sono-chemical preparation of cellulose nanocrystals from lignocellulose derived
materials. Bioresource Technology. 100: 2259-2264.
Kumar, P., Barrett, D.M., Delwiche, M.J. &
Stroeve, P. 2009. Methods for pretreatment of lignocellulosic
biomass for efficient hydrolysis and biofuel production. Industrial
& Engineering Chemistry Research 48: 3713-3729.
Kunaver, M.,
Jasiukaitytė, E. & Čuk, N. 2012. Ultrasonically assisted
liquefaction of lignocellulosic materials. Bioresource Technology 103:
360-366.
Madeleine, J.B. & Dongke, Z. 2013. Effect of ultrasound on lignocellulosic biomass as a pretreatment
for biorefinery and biofuel applications. Industrial &
Engineering Chemical Research 52: 3563-3580.
Martin, C., Rocha, G.J.M.,
Santos, J.R.A., Wanderley, C.A. & Gouveia, E.R. 2012. Enzyme loading dependence of cellulose
hydrolysis of sugarcane bagasse. Quimica Nova 35: 1927-1930.
Mcintosh, S. & Vancov, T. 2010. Enhanced enzyme saccharification of
Sorghum bicolor straw using dilute alkali pretreatment. Bioresource
Technology 101: 6718-6727.
Miller, G. 1959. Use of dinitrisalicylic
acid reagent for determination of reducing sugars. Analytical
Chemistry 31: 426-429.
Mishima, D., Kuniki, M., Sei, K., Soda, S., Ike, M. &
Fujita, M. 2008. Ethanol production from candidate energy crops: Water hyacinth
(Eichhornia crassipes) and water lettuce (Pistia stratiotes L.). Bioresource
Technology 99(7): 2495-2500.
Nitayavardhana, S., Shrestha, P., Rasmussen, M., Lamsal,
B.P., (Hans) van Leeuwen, J. & Khanal, S.K. 2010. Ultrasound improved
ethanol fermentation from cassava chips in cassava-based ethanol plants. Bioresource
Technology 101: 2741-2747.
Poddar, K., Mandal, L. & Banerjee,
G.C. 1991. Studies on water
hyacinth (Eichhornia crassipes) - Chemical composition of the plant and
water from different habitats. Indian Veterinary Journal 68:
833-837.
Singh, S., Bharadwaja, S.T.P., Yadav,
P.K. & Moholkar, V.S. 2014. Mechnistic investigation in ultrasound-assisted (Alkaline)
delignification of Parthenium hysterophorus biomass. Industrial
& Engineering Chemistry Research 53: 14241-14252.
Sluiter, A., Hames, B., Ruiz, R.,
Scarlata, C., Sluiter, J., Templeton, D. & Crocker, D. 2008. Determination of structural carbohydrates
and lignin in biomass. Laboratory Analytical Procedure
(LAP).
Sun, Y. & Cheng, J. 2008. Hydrolysis of lignocellulosic materials
for ethanol production. Bioresource Technology 83(1): 1-11.
Sun, R., Lawther, J.M. & Banks,
W.B. 1995. Influence of alkaline pre-treatments
on the cell wall components of wheat straw. Industrial Crops and Products 4(2):
127-145.
Taherzadeh, M.J. & Karimi, K. 2008. Pretreatment of
lignocellulosic wastes to improve ethanol and biogas production: A review. International
Journal of Molecular Sciences 9(9): 1621-1651.
Teater, C., Yue, Z., MacLellan, J.,
Liu, Y. & Liao, W. 2011. Assessing solid digestate from anaerobic digestion as feedstock for ethanol
production. Bioresource Technology 102: 1856-1862.
Teerapatr, S., Yuttasak, S., Nantana,
B., Pichit, P. & Vorakan, B. 2012. Effect of lignocellulosic substrate and commercial cellulase
loading on reducing sugar concentration for ethanol production. Journal
of Food Science and Engineering 2: 149-156.
The Centre for Agricultural Information (CAI) and Regional
Offices of Agricultural Economics, Agricultural Statistics of Thailand 2007. Office of Agricultural Economics. http://www.
oae.go.th/pdffile/yearbook%2050/yearbook50.pdf. Accessed on 21 February 2009.
Velmurugan, R. & Muthukumar, K. 2012. Sono-assisted
enzymatic saccharification of sugarcane bagasse for bioethanol production. Biochemical
Engineering Journal 63: 1-9.
Zhang, Y., Fu, E. & Liang, J. 2008. Effect
of ultrasonic waves on the saccharification processes of lignocellulose. Chemical Engineering and Technology 31: 1510-1515.
*Corresponding
author; email: faasrpp@ku.ac.th
|