Sains Malaysiana 45(6)(2016): 969–976
Aerobic
Fermentation of Saccharomeyes cerevisae in a Miniature Bioreactor Made
of Low Cost Poly(Methylmethacrylate) (PMMA)
and Poly(Dimethylsiloxane) (PDMS) Polymers
(Fermentasi
Aerobik Saccharomeyes cerevisae dalam Bioreaktor Mini Dihasilkan
daripada Polimer Poli(Metilmetakrilat) (PMMA) dan Poli(Dimetilsiloksana) (PDMS) Kos Rendah)
HAZWAN HALIMOON1, ABDUL RASHID HUSSAIN2, ABBAS KOUZANI3 & MUHD NAZRUL HISHAM ZAINAL ALAM3,4*
1Department
of Bioprocess Engineering, Faculty of Chemical Engineering, Universiti
Teknologi Malaysia, 81310 UTM Johor Bahru, Johor Darul Takzim, Malaysia
2Department
of Control and Mechatronic Engineering, Faculty of Electrical Engineering
Universiti
Teknologi Malaysia, 81310 UTM Johor Bahru, Johor Darul Takzim, Malaysia
3School
of Engineering, Deakin University, Waurn Ponds, Victoria 3216, Australia
4Process
Systems Engineering Centre, Faculty of Chemical and Energy Engineering,
Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor Darul
Takzim, Malaysia
Received:
3 September 2015/Accepted: 8 December 2016
ABSTRACT
In this paper, a minibioreactor platform made of low cost polymers
is presented. The minibioreactor prototype was designed as an alternative
solution for carrying out microbial fermentation experiments in laboratory. The
minibioreactor prototype has a working volume of 1.5 mL and was fabricated from poly(methylmethacrylate) (PMMA)
and poly(dimethylsiloxane) (PDMS) polymers. Cell density
was measured online whilst agitation rates and the temperature of the reactor
content can be tightly controlled to desired set-point values. As
proof-of-concept, various S.
cerevisae fermentation experiments were conducted. In every experiment, the
minibioreactor operated stably for the entire length of operation which was
nearly 40 h with very minimal volume loss i.e. about 2.8 μL·h-1 at
37ºC. The minibioreactor has the maximum oxygen transfer rate (OTR)
of 16.6 mmol·L-1·h-1 under the agitation rate of 300
rpm. Under these conditions, cell specific growth rate as high as 0.291 h-1 was
obtained. The experimental data in the minibioreactor operation was also
reproducible using shake flask where similar growth profiles were attained
under a similar growth conditions.
Keywords: Bioreactor; miniature bioreactors; online UV detection;
scale down; yeast fermentation
ABSTRAK
Dalam kertas ini, minibioreaktor yang dihasilkan
daripada polimer berkos rendah telah dibincangkan. Prototip minibioreaktor ini
direka bentuk sebagai alternatif dalam menjalankan eksperimen fermentasi
di dalam makmal. Prototip minibioreaktor ini mempunyai isi
padu kerja sebanyak 1.5 mL dan difabrikasi daripada polimer poli(metilmetakrilat)
(PMMA)
dan poli(dimetilsiloksana) (PDMS). Ketumpatan sel diukur secara
dalam talian sementara kadar pengadukan
dan suhu kandungan reaktor boleh dikawal pada nilai yang ditentukan.
Untuk membuktikan konsep, beberapa eksperimen fermentasi S. cerevisae telah dijalankan. Pada setiap eksperimen,
minibioreaktor beroperasi secara stabil selama eksperimen berlangsung
hampir 40 jam dengan kehilangan isi padu yang minimum iaitu sebanyak
2.8 μL·h-1 pada 37ºC. Minibioreaktor
ini mempunyai kadar pemindahan oksigen maksimum 16.6 mmol·L-1·h-1
pada kadar pengadukan 300 rpm.
Pada keadaan ini, kadar pertumbuhan sel khusus setinggi 0.291 h-1
diperoleh. Data eksperimen dalam operasi minibioreaktor
juga boleh diperoleh menggunakan kelalang goncang dengan profil
pertumbuhan yang sama dicapai pada keadaan
pertumbuhan yang serupa.
Kata kunci: Bioreaktor; bioreaktor bersaiz mini;
fermentasi yis; menskalakan ke bawah; pengesanan UV dalam talian
REFERENCES
Almeida, J.R.M., Modig, T., Petersson, A., Hähn-Hägerdal,
B., Lidén, G. & GorwaGrauslund, M.F. 2007. Increased tolerance and conversion of inhibitors in lignocellulosic
hydrolysates by Saccharomyces cerevisiae. Journal of Chemical
Technology and Biotechnology 82: 340-349.
Becker,
H. & Gaertner, C. 2008. Polymer microfabrication methods
for microfluidic analytical applications. Analytical and
Bioanalytical Chemistry 390(1): 89-111.
Betts, J.I. & Baganz, F. 2006. Miniature bioreactors: Current practices and future opportunities. Microbial
Cell Factories 5: (21) doi: 10.1186/1475-2859-5-21.
Boccazzi, P., Zhang, Z., Kurosawa, K., Szita, N.,
Bhattacharya, S., Jensen, K.F. & Sinskey, A.J. 2006. Differential gene expression profiles and realtime measurements of growth
parameters in Saccharomyces cerevisiae grown in microliter-scale bioreactors
equipped with internal stirring. Biotechnology Progress 22: 710-717.
Duetz, A.W., Ruedi, L., Hermann, R., O’Connor, K.,
Bűchs, J. & Witholt, B. 2000. Methods
for intense aeration, growth, storage and replication of bacterial straints in
Microtiter plates. Applied and Environmental Microbiology 66:
2641-2646.
Gill, N.K., Appleton, M., Baganz, F. & Lye, G.J. 2008. Design and characterisation of a miniature stirred bioreactor system for
parallel microbial fermentations. Biochemical Engineering Journal 39:
164-176.
Lee, H.L., Bocazzi, P., Ram, R.J. & Sinskey, A.J. 2006. Microbioreactor arrays with integrated mixers and fluid injectors for high
throughput experimentation with pH and dissolved oxygen control. Lab on a
Chip 6: 1229-1235.
Lin,
Y., Zhang, W., Li, C., Sakakibara, K., Tanaka, S. & Kong, H. 2012. Factors affecting ethanol fermentation using Saccharomyces
cerevisiae BY4742. Biomass and Bioenergy 47: 395-401.
Linek,
V. & Vacek, V. 1981. Chemical engineering use of catalyzed sulfite
oxidation kinetics for the determination of mass transfer characteristics of
gas-liquid contactors. Chemical Engineering Science 36: 1747-1768.
Ortiz-Mu˜niz, B., Carvajal-Zarrabal, O.,
Torrestiana-Sanchez, B. & Aguilar-Uscanga, M.G. 2010. Kinetic study on ethanol production using Saccharomyces cerevisiae ITV-01
yeast isolated from sugar cane molasses. Journal of Chemical Technology and
Biotechnology 85: 1361-1367.
Perozziello, G., Bundgaard, F. & Geschke, O. 2008. Fluidic interconnections for microfluidic systems: A new integrated fluidic
interconnection allowing plug’n’play functionality. Sensors and Actuators-B:
Chemical 130: 947-953.
Prasertwasu,
S., Khumsupan, D., Komolwanich, T., Chaisuwan, T., Luengnaruemitchai, A. &
Wongkasemjit, S. 2014. Efficient process for ethanol production from Thai
Mission grass (Pennisetum polystachion). Bioresource Technology 163:
152-159.
Saqib,
A.A.N. & Whitney, P.J. 2011. Differential behaviour of
the dinitrosalicylic acid (DNS) reagent towards mono- and di-saccharide sugars. Short communication. Biomass and Bioenergy 35: 4748-4750.
Schäpper, D., Stocks, S.M., Szita, N., Lantz, A.E. &
Gernaey, K.V. 2010. Development of a
single-use microbioreactor for cultivation of microorganisms. Chemical
Engineering Journal 160: 891-898.
Schäpper, D., Zainal Alam, M.N.H., Szita, N., Lantz, A.E.
& Gernaey, K.V. 2009. Application of microbioreactors in
fermentation process development: A review. Analytical and Bioanalytical
Chemistry 395(3): 679-695.
Szita, N., Boccazzi, P., Zhang, Z.Y., Boyle, P., Sinskey,
A.J. & Jensen, K.F. 2005. Development of a
multiplexed microbioreactor system for high-throughput bioprocessing. Lab
on a Chip 5(8): 819-826.
Shuler, M.L. & Kargi, F. 2002. Bioprocess
Engineering: Basic Concepts. 2nd ed. New Jersey:
Prentice Hall.
Stanbury,
P.F., Hall, S. & Whitaker, A. 1999. Principles of
Fermentation Technology. 2nd ed. UK: Butterworth- Heinemann.
Tesfaw, A. & Assefa, F. 2014. Current trends in bioethanol production by Saccharomyces cerevisiae:
Substrate, inhibitor reduction, growth variables, coculture, and
immobilization. International Scholarly Research Notices. Hindawi Publishing Corporation, Article ID 532852.
http://dx.doi.org/10.1155/2014/532852.
Wee,
N.K., Hamid, A.A., Kalil, A.S. & Wan Yusoff, W.M. 2010. Kesan
pengudaraan dan pencairan ke atas penghasilan bioetanol secara selanjar dalam
bioreaktor padat oleh Saccharomyces cerevisiae. Sains
Malaysiana 39(1): 141-144.
Zainal Alam, M.N.H., Schäpper, D. & Gernaey, K.V. 2010. Embedded resistance wire as heating element for temperature control in
microbioreactors. Journal of Micromechanics and
Microengineering. 20: 055014. doi:10.1088/0960-
1317/20/5/055014.
Zanzotto, A., Szita, N., Boccazzi, P., Lessard, P., Sinskey,
A.J. & Jensen, K.F. 2004. Membrane-aerated
microbioreactor for high-throughput bioprocessing. Biotechnoogy
&. Bioengineering 87: 243-254.
Zhang,
C. & Xing, D. 2007. Miniaturized PCR chips for nucleic acid amplification
and analysis: Latest advances and future trends. Nucleic Acid Research 35(13):
4223-4237.
*Corresponding
author; email: nazrul@cheme.utm.my
|