Sains Malaysiana 45(6)(2016): 977–987

 

Evolusi Mikrostruktur Aloi A333 melalui Proses Logam Separa Pepejal

(Microstructural Evolution of A333 Alloy through Semisolid Metal Process)

 

A.M. AZIZ1*, M.Z. OMAR1 & M.S. SALLEH1,2

 

1Jabatan Kejuruteraan Mekanik dan Bahan, Fakulti Kejuruteraan dan Alam Bina

Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Darul Ehsan, Malaysia

 

2Jabatan Proses Pembuatan, Fakulti Kejuruteraan Pembuatan, Universiti Teknikal Malaysia Melaka, 76100 Durian Tunggal, Melaka, Malaysia

 

Received: 9 January 2015/Accepted: 21 December 2015

 

ABSTRAK

Pemprosesan logam separa pepejal yang juga dikenali sebagai pembentukan-tikso merupakan suatu kaedah pemprosesan yang secara relatifnya adalah baharu jika dibandingkan dengan kaedah pemprosesan biasa seperti penuangan dan penempaan. Sebelum pembentukan-tikso dapat dilakukan, aloi berkenaan perlu melalui langkah awal persediaan iaitu dengan mengubah mikrostruktur asal berbentuk dendritik kepada bentuk hampir sfera. Ini diikuti dengan pemanasan semula ke julat suhu separa pejal (iaitu sekitar 30-50% cecair) dan seterusnya proses ubah bentuk ke dalam acuan menggunakan mesin penekanan hidraulik. Antara kaedah utama yang biasa digunakan bagi penyediaan bahan aloi ini adalah tuangan cerun penyejukan, pengadukan mekanik dan kaedah terma langsung. Kajian ini memberi tumpuan kepada evolusi mikrostruktur aloi aluminium A333 (Al-7.5Si-3.1Cu) daripada bentuk dendritik kepada hampir sfera sebagai persediaan untuk diproses melalui pembentukan-tikso kelak. Kaedah tuangan cerun penyejukan digunakan dalam kajian ini kerana kaedah ini diketahui berkesan tapi mudah digunakan. Nilai saiz ira dan faktor bentuk dianalisis berdasarkan kepada suhu tuangan dan panjang cerun penyejukan berbeza yang digunakan. Di samping itu, kaedah kalometri pengimbas perbezaan juga diguna pakai dalam mengenal pasti suhu sempadan pepejal dan sempadan cecair aloi ini. Saiz ira fasa pepejal α-Al paling kecil dan nilai faktor bentuk terbaik yang diperoleh dalam kajian ini berlaku pada suhu tuangan 620°C dan panjang cerun 300 mm, iaitu masing-masing pada 15.3 μm dan 0.54.

 

Kata kunci: Aloi aluminium; rawatan haba sesuhu; tuangan cerun penyejukan

 

ABSTRACT

Semi solid metal processing also known as thixoforming is a relatively new processing method compared to the conventional casting and forging processes. Prior to the thixoforming process, the candidate alloy must go through a preparation procedure to transform its normally dendritic structure to a near spheroidal form. This is followed by a re-heating process at a semi solid temperature range (30-50% liquid range) before forming in a mould using a hydraulic pressing machine. Among the mostly used alloy preparation methods were cooling slope casting, mechanical stirring and direct thermal methods. This study focused on the microstructural evolution of A333 (Al-7.5Si-3.1Cu) aluminium alloy from dendritic to a near spheroidal microstructure as a preparation for the later thixoforming process. The cooling slope casting method was selected in this study because the method was known to be effective yet simple to use. The resulting grain size and shape factor of the solid phase were analysed in response to the pouring temperatures and the lengths of the cooling slope plate selected. In addition, the identification of the solidus and liquidus temperatures was carried out using a difference scanning calometry method. The finest grain size and the best shape factor for the α-Al solid phase were obtained at 620°C pouring temperature and 300 mm cooling slope plate length, i.e. at 15.3 μm and 0.54, respectively.

 

Keywords: Aluminum alloy; cooling slope process; isothermal heat treatment

REFERENCES

Birol, Y. 2007. A357 thixoforming feedstock produced by cooling slope casting. Journal of Materials Processing Technology 186(1-3): 94-101.

Bogdanoff, T. & Dahlström, J. 2009. The influence of copper on an Al-Si-Mg alloy (A356) - Microstructure and mechanical properties. Jönköping University, Sweden (tidak diterbitkan).

Czerwinski, F. 2002. On the generation of thixotropic structures during melting of Mg-9% Al-1% Zn alloy. Acta Materialia 50: 3265-3281.

Fan, Z. 2002. Semisolid metal processing. International Materials Reviews 47(2): 49-85.

Gencalp, S. & Saklakoglu, N. 2010. Semisolid microstructure evolution during cooling slope casting under vibration of A380 aluminum alloy. Materials and Manufacturing Processes 25(9): 943-947.

Haga, T., Nakamura, R., Tago, R. & Watari, H. 2010. Effects of casting factors of cooling slope on semisolid condition. Transactions of Nonferrous Metals Society of China 20: 968-972.

Haitao, J. & Miaoquan, L. 2004. Effects of isothermal heat treatment on microstructural evolution of semisolid Al-4Cu- Mg alloy. Journal of Materials Engineering and Performance 13(4): 488-492.

Hu, X., Ai, F. & Yan, H. 2012. Influences of pouring temperature and cooling rate on microstructure and mechanical properties of casting Al-Si-Cu aluminum alloy. Acta Metallurgica Sinica (English Letters) 25(4): 272-278.

Joseph, R.D. 1999. Corrosion on Aluminum and Aluminum Alloys. Ed ke-2. Materials Park: ASM International. hlm. 313.

Kumar, S.D., Vundavilli, P.R., Mantry, S., Mandal, A. & Chakraborty, M. 2014. A Taguchi optimization of cooling slope casting process parameters for production of semi-solid A356 alloy and A356-5TiB2 in-situ composite feedstock. Procedia Materials Science 5: 232-241.

Kund, N.K. & Dutta, P. 2010. Numerical simulation of solidification of liquid aluminum alloy flowing on cooling slope. Transactions of Nonferrous Metals Society of China 20: 898-905.

Legoretta, E.C., Atkinson, H.V. & Jones, H. 2007. Cooling slope casting to obtain thixotropic feedstock. Proceedings of the 5th Decennial International Conference on Solidification Processing. pp. 23-25.

Liang, S.M., Chen, R.S. & Han, E.H. 2008. Semisolid microstructural evolution of equal channel angular extruded Mg-Al alloy during partial remelting. Solid State Phenomena 141-143: 557-562.

Liu, D., Atkinson, H.V. & Jones, H. 2005. Thermodynamic prediction of thixoformability in alloys based on the Al– Si–Cu and Al–Si–Cu–Mg systems. Acta Materialia 53(14): 3807-3819.

Mohammed, M.N., Omar, M.Z., Salleh, M.S., Alhawari, K.S. & Kapranos, P. 2013. Semisolid metal processing techniques for nondendritic feedstock production. The Scientific World Journal 2013: 752175.

Nafsin, N. & Rashed, H.M.M.A. 2013. Effects of copper and magnesium on microstructure and hardness of Al-Cu-Mg alloys. International Journal of Engineering and Advanced Technology 2(5): 533-536.

Salleh, M.S., Omar, M.Z., Syarif, J., Alhawari, K.S. & Mohammed, M.N. 2014a. Microstructure and mechanical properties of thixoformed A319 aluminium alloy. Materials & Design 64: 142-152.

Salleh, M.S., Omar, M.Z., Syarif, J. & Mohammed, M.N. 2014b. Pemodelan termodinamik aloi Al-Si-Cu untuk pemprosesan logam separa pepejal. Sains Malaysiana 43(5): 791-798.

Salleh, M.S., Omar, M.Z., Syarif, J., Mohammed, M.N. & Alhawari, K.S. 2013. Thermodynamic simulation on thixoformability of aluminium alloys for semi-solid metal processing. International Journal of Mathematics and Computers in Simulation 7(3): 286-293.

Solek, K.P., Kuziak, R.M. & Karbowniczek, M. 2007. The application of thermodynamic calculations for the semi-solid processing design. Symposium I “Phase Diagrams; Phase Stability; Theory and Applications” Warsaw, Poland. hlm. 4-8.

Wannasin, J. & Thanabumrungkul, S. 2008. Development of a semi-solid metal processing technique for aluminium casting applications. Songklanakarin Journal of Science and Technology 30(2): 215-220.

Zhang, Y., Ma, Q., Xie, S., Xu, J. & Guo, H. 2011. Orthogonal experiment in rheocasting-rolling for semi-solid magnesium alloy used by slope and mechanical stirring. The Open Materials Science Journal 5(3): 134-139.

Zolotorevskiĭ, V.S., Glazoff, M.V. & Belo, N.A. 2007. Casting Aluminum Alloys. Amsterdam, Netherlands: Elsevier Science. hlm. 544.

Zoqui, E.J. & Naldi, M.A. 2011. Evaluation of the thixoformability of the A332 Alloy (Al–9.5 wt%Si–2.5 wt%Cu). Journal of Materials Science 46(23): 7558-7566.

 

 

*Corresponding author; email: ahmadaziz@siswa.ukm.edu.my

 

 

previous