Sains Malaysiana 45(6)(2016): 977–987
Evolusi
Mikrostruktur Aloi A333 melalui Proses Logam Separa Pepejal
(Microstructural
Evolution of A333 Alloy through Semisolid Metal Process)
A.M. AZIZ1*, M.Z. OMAR1 & M.S. SALLEH1,2
1Jabatan
Kejuruteraan Mekanik dan Bahan, Fakulti Kejuruteraan dan Alam Bina
Universiti Kebangsaan Malaysia, 43600
Bangi, Selangor Darul Ehsan, Malaysia
2Jabatan Proses
Pembuatan, Fakulti Kejuruteraan Pembuatan, Universiti Teknikal Malaysia Melaka,
76100 Durian Tunggal, Melaka, Malaysia
Received: 9 January 2015/Accepted: 21 December 2015
ABSTRAK
Pemprosesan logam separa pepejal yang juga dikenali
sebagai pembentukan-tikso merupakan suatu kaedah pemprosesan yang
secara relatifnya adalah baharu jika dibandingkan dengan kaedah
pemprosesan biasa seperti penuangan dan penempaan. Sebelum pembentukan-tikso
dapat dilakukan, aloi berkenaan perlu melalui langkah awal persediaan
iaitu dengan mengubah mikrostruktur asal berbentuk dendritik kepada
bentuk hampir sfera. Ini diikuti dengan pemanasan semula
ke julat suhu separa pejal (iaitu sekitar 30-50% cecair) dan seterusnya
proses ubah bentuk ke dalam acuan menggunakan mesin penekanan hidraulik.
Antara kaedah utama yang biasa digunakan bagi
penyediaan bahan aloi ini adalah tuangan cerun penyejukan, pengadukan
mekanik dan kaedah terma langsung. Kajian
ini memberi tumpuan kepada evolusi mikrostruktur aloi aluminium
A333 (Al-7.5Si-3.1Cu) daripada bentuk dendritik kepada hampir sfera
sebagai persediaan untuk diproses melalui pembentukan-tikso kelak.
Kaedah tuangan cerun penyejukan digunakan dalam kajian ini kerana
kaedah ini diketahui berkesan tapi mudah digunakan. Nilai
saiz ira dan faktor bentuk dianalisis berdasarkan kepada suhu tuangan
dan panjang cerun penyejukan berbeza yang digunakan. Di
samping itu, kaedah kalometri pengimbas perbezaan juga diguna pakai
dalam mengenal pasti suhu sempadan pepejal dan sempadan cecair aloi
ini. Saiz ira fasa pepejal α-Al paling kecil
dan nilai faktor bentuk terbaik yang diperoleh dalam kajian ini
berlaku pada suhu tuangan 620°C dan panjang cerun 300
mm, iaitu masing-masing pada 15.3 μm dan 0.54.
Kata kunci: Aloi aluminium; rawatan haba sesuhu; tuangan cerun
penyejukan
ABSTRACT
Semi solid metal processing also known as thixoforming is a
relatively new processing method compared to the conventional casting and
forging processes. Prior to the thixoforming process, the candidate alloy must
go through a preparation procedure to transform its normally dendritic
structure to a near spheroidal form. This is followed by a re-heating process
at a semi solid temperature range (30-50% liquid range) before forming in a
mould using a hydraulic pressing machine. Among the mostly used alloy
preparation methods were cooling slope casting, mechanical stirring and direct
thermal methods. This study focused on the microstructural evolution of A333
(Al-7.5Si-3.1Cu) aluminium alloy from dendritic to a near spheroidal
microstructure as a preparation for the later thixoforming process. The cooling
slope casting method was selected in this study because the method was known to
be effective yet simple to use. The resulting grain size and shape factor of
the solid phase were analysed in response to the pouring temperatures and the
lengths of the cooling slope plate selected. In addition, the identification of
the solidus and liquidus temperatures was carried out using a difference
scanning calometry method. The finest grain size and the best shape factor for
the α-Al solid phase were obtained at 620°C pouring temperature and 300 mm
cooling slope plate length, i.e. at 15.3 μm and 0.54, respectively.
Keywords: Aluminum alloy; cooling slope process;
isothermal heat treatment
REFERENCES
Birol, Y. 2007. A357 thixoforming
feedstock produced by cooling slope casting. Journal of Materials
Processing Technology 186(1-3): 94-101.
Bogdanoff, T. & Dahlström, J. 2009. The
influence of copper on an Al-Si-Mg alloy (A356) - Microstructure and mechanical
properties. Jönköping University, Sweden (tidak diterbitkan).
Czerwinski, F. 2002. On the generation of thixotropic
structures during melting of Mg-9% Al-1% Zn alloy. Acta Materialia 50:
3265-3281.
Fan, Z. 2002. Semisolid metal processing. International
Materials Reviews 47(2): 49-85.
Gencalp, S. & Saklakoglu, N. 2010. Semisolid microstructure evolution during
cooling slope casting under vibration of A380 aluminum alloy. Materials
and Manufacturing Processes 25(9): 943-947.
Haga, T., Nakamura, R., Tago, R. &
Watari, H. 2010. Effects of casting factors of cooling
slope on semisolid condition. Transactions of Nonferrous Metals Society of
China 20: 968-972.
Haitao, J. & Miaoquan, L. 2004. Effects
of isothermal heat treatment on microstructural evolution of semisolid Al-4Cu-
Mg alloy. Journal of Materials Engineering and Performance 13(4):
488-492.
Hu, X., Ai, F. & Yan, H. 2012. Influences of pouring temperature and cooling rate on
microstructure and mechanical properties of casting Al-Si-Cu aluminum alloy. Acta
Metallurgica Sinica (English Letters) 25(4): 272-278.
Joseph, R.D. 1999. Corrosion on
Aluminum and Aluminum Alloys. Ed ke-2. Materials Park: ASM
International. hlm. 313.
Kumar, S.D., Vundavilli, P.R., Mantry,
S., Mandal, A. & Chakraborty, M. 2014. A
Taguchi optimization of cooling slope casting process parameters for production
of semi-solid A356 alloy and A356-5TiB2 in-situ composite feedstock. Procedia
Materials Science 5: 232-241.
Kund, N.K. & Dutta, P. 2010. Numerical simulation of
solidification of liquid aluminum alloy flowing on cooling slope. Transactions
of Nonferrous Metals Society of China 20: 898-905.
Legoretta, E.C., Atkinson, H.V. & Jones, H. 2007.
Cooling slope casting to obtain thixotropic feedstock. Proceedings
of the 5th Decennial International Conference on Solidification Processing. pp. 23-25.
Liang, S.M., Chen, R.S. & Han, E.H.
2008. Semisolid microstructural evolution of
equal channel angular extruded Mg-Al alloy during partial remelting. Solid
State Phenomena 141-143: 557-562.
Liu, D., Atkinson, H.V. & Jones, H.
2005. Thermodynamic prediction of
thixoformability in alloys based on the Al– Si–Cu and
Al–Si–Cu–Mg systems. Acta Materialia 53(14):
3807-3819.
Mohammed, M.N., Omar, M.Z., Salleh, M.S., Alhawari, K.S.
& Kapranos, P. 2013. Semisolid metal processing
techniques for nondendritic feedstock production. The Scientific
World Journal 2013: 752175.
Nafsin, N. & Rashed, H.M.M.A. 2013. Effects
of copper and magnesium on microstructure and hardness of Al-Cu-Mg alloys. International Journal of Engineering and Advanced Technology 2(5):
533-536.
Salleh, M.S., Omar, M.Z., Syarif, J.,
Alhawari, K.S. & Mohammed, M.N. 2014a. Microstructure and mechanical properties of thixoformed A319 aluminium alloy. Materials
& Design 64: 142-152.
Salleh, M.S., Omar, M.Z., Syarif, J.
& Mohammed, M.N. 2014b. Pemodelan termodinamik aloi Al-Si-Cu untuk pemprosesan logam separa
pepejal. Sains Malaysiana 43(5): 791-798.
Salleh, M.S., Omar, M.Z., Syarif, J., Mohammed, M.N. &
Alhawari, K.S. 2013. Thermodynamic simulation on thixoformability of aluminium
alloys for semi-solid metal processing. International Journal of Mathematics
and Computers in Simulation 7(3): 286-293.
Solek, K.P., Kuziak, R.M. & Karbowniczek, M. 2007. The application of thermodynamic calculations for the semi-solid
processing design. Symposium I “Phase Diagrams;
Phase Stability; Theory and Applications” Warsaw, Poland. hlm. 4-8.
Wannasin, J. &
Thanabumrungkul, S. 2008. Development of a semi-solid metal
processing technique for aluminium casting applications. Songklanakarin
Journal of Science and Technology 30(2): 215-220.
Zhang, Y., Ma, Q., Xie, S., Xu, J. & Guo, H. 2011. Orthogonal experiment in rheocasting-rolling for semi-solid
magnesium alloy used by slope and mechanical stirring. The Open
Materials Science Journal 5(3): 134-139.
Zolotorevskiĭ, V.S., Glazoff, M.V. & Belo, N.A.
2007. Casting Aluminum Alloys. Amsterdam, Netherlands: Elsevier Science. hlm. 544.
Zoqui, E.J. & Naldi, M.A. 2011. Evaluation
of the thixoformability of the A332 Alloy (Al–9.5 wt%Si–2.5 wt%Cu). Journal of Materials Science 46(23): 7558-7566.
*Corresponding
author; email: ahmadaziz@siswa.ukm.edu.my
|