Sains Malaysiana 45(6)(2016): 989–998
Block
Backward Differentiation Formulas for Solving First Order Fuzzy Differential
Equations under Generalized Differentiability
(Formula
Blok Pembezaan Kebelakang bagi Menyelesaikan Persamaan Pembezaan
Kabur Peringkat Pertama di bawah Kebolehbezaan Umum)
ISKANDAR SHAH MOHD ZAWAWI1 & ZARINA BIBI IBRAHIM2*
1Department
of Mathematicsm Faculty of Sciencem Universiti Putra Malaysia, 43400 Serdang,
Selangor Darul Ehsan, Malaysia
2Institute for
Mathematical Research, Universiti Putra Malaysia, 43400 Serdang, Selangor Darul
Ehsan, Malaysia
Received: 7 April 2015/Accepted: 5 January 2015
ABSTRACT
In this paper, the fully implicit 2-point block backward
differentiation formula and diagonally implicit 2-point block backward
differentiation formula were developed under the interpretation of generalized
differentiability concept for solving first order fuzzy differential equations.
Some fuzzy initial value problems were tested in order to demonstrate the performance
of the developed methods. The approximated solutions for both methods were in
good agreement with the exact solutions. The numerical results showed that the
diagonally implicit method outperforms the fully implicit method in term of
accuracy.
Keywords: Block; diagonally; fuzzy; implicit
ABSTRAK
Dalam kertas ini, formula 2-titik blok pembezaan kebelakang tersirat penuh dan formula 2-titik blok pembezaan
kebelakang tersirat pepenjuru dibangunkan di bawah konsep kebolehbezaan umum
bagi menyelesaikan persamaan pembezaan kabur peringkat pertama. Beberapa masalah-masalah nilai awal kabur diuji untuk menunjukkan
prestasi kaedah yang dibangunkan. Penyelesaian yang
dianggarkan bagi kedua-dua kaedah adalah dalam persetujuan yang baik dengan
penyelesaian tepat. Keputusan berangka menunjukkan
kaedah tersirat pepenjuru mengatasi kaedah tersirat penuh dalam terma kejituan.
Kata kunci: Blok; kabur; pepenjuru; tersirat
REFERENCES
Abbasbandi, S. & Viranloo, T.A. 2002. Numerical solutions of fuzzy differential equations by Taylor
method. Comp. Method in Applied Mathematics 2: 113-124.
Ahmad, M.Z. & Hasan, M
K. 2011. A new
fuzzy version of Euler’s method for solving differential equations with fuzzy
initial values. Sains Malaysiana 40(6): 651-657.
Balooch Shahryari, M.R. & Salahshour, S.
2012. Improved predictor corrector method for solving fuzzy differential
equations under generalized differentiability. Journal of Fuzzy Set Valued
Analysis 2012: 1-16.
Bede, B., Bhaskar, T.G.
& Lakshmikantham, V. 2007. Perspective of fuzzy initial value problems. Communications in Applied Analysis 11: 339-358.
Bede, B. & Gal, S.G. 2005. Generalizations of the differentiability of fuzzy-number-valued
functions with applications to fuzzy differential equations. Fuzzy
Sets and Systems 151: 581-599.
Chalco-Cano, Y. &
Roman-Flores, H. 2008. On new solutions of fuzzy differential equations. Chaos,
Solitons and Fractals 38: 112-119.
Ghazanfari, B. & Shakerami, A. 2012.
Numerical solutions of fuzzy differential equations by extended Runge-Kutta-like
formulae of order four. Fuzzy Sets and Systems 189(1): 74-91.
Ibrahim, Z.B., Suleiman, M.B. & Nasir,
N.A.A.M. 2011. Convergence of the 2-point block backward
differentiation formulas. Applied Mathematical Sciences 5(70):
3473-3480.
Ibrahim, Z.B., Suleiman, M.B. & Othman, K.I.
2008. Fixed coefficients block backward differentiation formulas for the
numerical solution of stiff ordinary differential equations. European
Journal of Scientific Research 21(3): 508-520.
Ibrahim, Z.B., Suleiman, M.B. & Othman, K.I.
2007. Implicit r-point block backward differentiation formula
for solving first order stiff odes. Applied Mathematics and
Computation 186: 558-565.
Ibrahim, Z.B., Johari, R.
& Ismail, F. 2003. On the stability of block backward differentiation formulae. Matematika 19(2): 83-89.
Mondal, S.P. & Roy, T.K. 2013. First order
linear homogeneous ordinary differential equation in fuzzy environment based on laplace transform. Journal of Fuzzy Set Valued
Analysis 2013: 1-18.
Puri, M.L. & Ralescu, D. 1983. Differential for fuzzy
function. J. Math. Anal. Appl. 91: 552-558.
Shokri, J. 2007. Numerical solution of
fuzzy differential equations. Applied Mathematical Sciences 1:
2231-2246.
Zawawi, I.S.M., Ibrahim, Z.B., Ismail, F. & Majid, Z.A.
2012. Diagonally implicit block backward differentiation
formulas for solving ordinary differential equations. International
Journal of Mathematics and Mathematical Sciences Article ID 767328.
*Corresponding author: zarinabb@upm.edu.my
|