Sains Malaysiana 45(7)(2016): 1041–1047

 

Leaching and Freeze-Thaw Events Contribute to Litter Decomposition - A Review

(Kejadian Larut Lesap dan Beku-Cair Menyumbang kepada Penguraian Sampah

 - Suatu Ulasan)

 

LIPING JIANG1,2, KAI YUE2, YULIAN YANG1 & QINGGUI WU1*

 

1Ecological Security and Protection, Key Laboratory of Sichuan Province, Mianyang Normal University, 166, West Mianxing Road, Gaoxin District, Sichuan Province, Mianyang 621000,

P.R. China

 

2Long-term Research Station of Alpine Forest Ecosystems, Key Laboratory of Ecological Forestry Engineering, Institute of Ecology and Forestry, Sichuan Agricultural University, Chengdu 611130,

P.R. China

 

Received: 6 November 2015/Accepted: 30 January 2016

 

ABSTRACT

Litter decomposition is vital for carbon and nutrient turnover in terrestrial ecosystems, and this process has now been thoroughly demonstrated to be regulated by various mechanisms. The total environment has been continuously changing in recent decades, especially in high-latitude regions; these alterations, however, profoundly contribute to the decomposition process, but a comprehensive recognition has not available. Here we reviewed the empirical observations and current knowledge regarding how hydrological leaching and freeze-thaw events modulate early decomposition of plant litter. Leaching contributes a considerable percentage of mass loss and carbon and nutrient release in early stage of decomposition, but the magnitudes are different between species levels depending on the chemical traits. Frequent freezing and thawing events could positively influence decomposition rate in cold biomes but also hamper soil decomposer and there is no general and predictable pattern has been emerged. Further experiments should be manipulated to estimate how the altered freezing and thawing effect on carbon and nutrient release from plant litter to better understanding the changing environment on litter decomposition.

 

Keywords: cold biomes; freeze-thaw; leaching; litter decomposition

 

ABSTRAK

Penguraian sampah adalah penting untuk pusing ganti karbon dan nutrien dalam ekosistem daratan dan proses ini kini telah dibuktikan secara terperinci dikawal oleh pelbagai mekanisme. Persekitaran secara keseluruhan berterusan berubah sejak beberapa dekad kebelakangan ini terutamanya di kawasan berlatitud tinggi; perubahan ini, walau bagaimanapun menyumbang secara mendalam kepada proses penguraian, tetapi tidak terdapat suatu pengiktirafan yang komprehensif. Di sini kami mengkaji cerapan empirik dan pengetahuan semasa tentang bagaimana kejadian hidrologi larut lesap dan beku-cair memodulatkan proses awal pereputan sampah loji. Larut lesap menyumbang kepada peratusan kehilangan jisim dan karbon serta pelepasan nutrien yang agak besar pada peringkat awal pereputan, tetapi magnitud tersebut berbeza antara tahap spesies bergantung kepada sifat kimia. Kekerapan kejadian larut lesap dan beku-cair boleh secara positif mempengaruhi kadar penguraian dalam biom sejuk tetapi juga menghalang tanah diurai serta tidak terdapat pola umum dan boleh diramal yang muncul. Uji kaji susulan harus dimanipulasi untuk menganggarkan bagaimanakah kesan pengubahsuaian larut lesap dan beku-cair ke atas pembebasan karbon dan nutrien dari loji sampah untuk memahami dengan lebih baik persekitaran yang berubah-ubah kepada penguraian sampah.

 

Kata kunci: Beku-cair; biom sejuk; larut lesap; penguraian sampah

REFERENCES

 

Aerts, R. 1997. Climate, leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems: a triangular relationship. Oikos 79: 439-449.

Andersson, S. & Nilsson, S.I. 2001. Influence of pH and temperature on microbial activity, substrate availability of soil-solution bacteria and leaching of dissolved organic carbon in a mor humus. Soil Biology and Biochemistry 33: 1181-1191.

Andersson, S., Nilsson, S.I. & Saetre, P. 2000. Leaching of dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) in mor humus as affected by temperature and pH. Soil Biology and Biochemistry 32: 1-10.

Arctic Climate Impact Assessment. 2005. Arctic Climate Impact Assessment-Scientific Report. Cambridge: Cambridge University Press.

Austin, A.T. & Ballaré, C.L. 2010. Dual role of lignin in plant litter decomposition in terrestrial ecosystems. Proceedings of the National Academy of Sciences of the United States of America 107: 4618-4622.

Baldwin, D.S. 1999. Dissolved organic matter and phosphorus leached from fresh and ‘terrestrially’ aged river red gum leaves: implications for assessing river-floodplain interactions. Freshwater Biology 41: 675-685.

Bernhard-Reversat, F. 1993. Dynamics of litter and organic matter at the soil-litter interface in fast-growing tree plantations on sandy ferralitic soils (Congo). Acta Oecologica 14: 179-195.

Bokhorst, S., Bjerke, J.W., Melillo, J., Callaghan, T.V. & Phoenix, G.K. 2010. Impacts of extreme winter warming events on litter decomposition in a sub-Arctic heathland. Soil Biology and Biochemistry 42(4): 611-617.

Brooks, P.D., Schmidt, S.K. & Williams, M.W. 1997. Winter production of CO2 and N2O from alpine tundra: environmental controls and relationship to inter-system C and N fluxes. Oecologia 110: 403-413.

Campbell, J.L., Mitchell, M.J. & Groffman, P.M., Christenson, L.M. & Hardy, J.P. 2005. Winter in northeastern North America: a critical period for ecological processes. Fronters in Ecology and the Environment 3: 314-322.

Christenson, L.M., Mitchell, M.J. & Groffman, P.M. & Lovett, G.M. 2010. Winter climate change implications for decomposition in northeastern forests: comparisons of sugar maple litter with herbivore fecal inputs. Global Change Biology 16: 2589-2601.

Copper, E.J. 2014. Warmer shoeter winters disrupt arctic terrestrial ecosystems. Annual Review of Ecology, Evolution and Systems 45: 271-295.

Cornwell, W.K., Cornelissen, J.H.C. Amatangelo, K., Dorrepaal, E., Eviner, V.T., Godoy, O., Hobbie, S.E., Hoorens, B., Kurokawa, H., Pérez-Harguindeguy, N., Quested, H.M., Santiago, L.S., Wardle, D.A., Wright, I.J., Aerts, R., Allison, S.D., van Bodegom, P., Brovkin, V., Chatain, A., Callaghan, T.V., Díaz, S., Garnier, E., Gurvich, D.E., Kazakou, E., Klein, J.A., Read, J., Reich, P.B., Soudzilovskaia, N.A., Vaieretti, M.V. & Westoby, M. 2008. Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecology Letters 11: 1065-1071.

Cotrufo, M.F., Wallenstein, M.W., Boot, C.M., Denef, K. & Paul, E. 2013. The microbial efficiency-matrix stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable soil organic matter? Global Change Biology 19: 988-995.

Cotrufo, M.F., Soong, J.L., Horton, A.J., Campbell, E.E., Haddix. M.L., Wall, D.H. & Parton, W.J. 2015. Formation of soil organic matter via biochemical and physical pathwats of litter mass loss. Nature Geoscience 8: 776-779.

Davidson, E.A. & Janssens, I.A. 2006. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440: 165-173.

Deluca, T.H., Keeney, D.R. & Mccarty, G.W. 1992. Effect of freeze-thaw events on mineralization of soil nitrogen. Biology and Fertility of Soils 14: 116-120.

Edwards, A.C., Scalenghe, R. & Freppaz, M. 2007. Changes in the seasonal snow cover of alpine regions and its effect on soil processes: a review. Quaternary International 162-163: 172-181.

France, R., Culbert, H., Freeborough, C. & Peters, R. 1997. Leaching and early mass loss of boreal leaves and wood in oligotrophic water. Hydrobiologia 345: 209-214.

Freppaz, M., Williams, B.L. & Edwards, A.C., Scalenghe, R. & Zanini, E. 2007. Simulating soil freeze/thaw cycles typical of winter alpine conditions: Implications for N and P availability. Applied Soil Ecology 35(1): 247-255.

Ghani, A., Müller, K., Dodd, M. & Mackay, A. 2010. Dissolved organic matter leaching in some contrasting New Zealand pasture soils. European Journal of Soil Science 61: 525-538.

Ghani, A., Sarathchandra, U., Ledgard, S., Dexter, M. & Lindsey. S. 2013. Microbial decomposition of leached or extracted dissolved organic carbon and nitrogen from pasture soils. Biology and Fertility of Soils 49: 747-755.

Groffman, P.M., Driscoll, C.T., Fahey, T.J., Hardy, J.P., Fitzhugh, R.D. & Tierney, G.L. 2001. Colder soils in a warmer world: a snow manipulation study in a northern hardwood forest ecosystem. Biogeochemistry 56: 135-150.

Hafner, S.D., Groffman, P.M. & Mitchell, M.J. 2005. Leaching of dissolved organic carbon, dissolved organic nitrogen, and other solutes from coarse woody debris and litter in a mixed forest in New York State. Biogeochemistry 74: 257-282.

Hagedorn, F. & Machwitz, M. 2007. Controls on dissolved organic matter leaching from forest litter grown under elevated atmospheric. Soil Biology and Biochemistry 39: 1759-1769.

Hansson, K., Kleja, D.B., Kalbitz, K. & Larsson, H. 2010. Amounts of carbon mineralised and leached as DOC during decomposition of Norway spruce needles and fine roots. Soil Biology and Biochemistry 42: 178-185.

Henry, H.A.L. 2007. Soil freeze-thaw cycle experiments: trends, methodological weaknesses and suggested improvements. Soil Biology and Biochemistry 39: 977-986.

Hobbie, S., Nadelhoffer, K. & Högberg, P. 2002. A synthesis: The role of nutrients as constraints on carbon balances in boreal and arctic regions. Plant and Soil 242: 163-170.

Hobbie, S. & Chapin III, F.S. 1996. Winter regulation of tundra litter carbon and nitrogen dynamics. Biogeochemistry 35: 327-338.

Lemma, B., Nilsson, I., Kleja, D.B., Olsson, M. & Knicker, H. 2007. Decomposition and substrate quality of leaf litters and fine roots from three exotic plantations and a native forest in the southwestern highlands of Ethiopia. Soil Biology and Biochemistry 39: 2317-2328.

Makkonen, M., Berg, M.P., Handa, I.T., Hättenschwiler, S., van Ruijven, J., van Bodegom, P.M. & Aerts, R. 2012. Highly consistent effects of plant litter identity and functional traits on decomposition across a latitudinal gradient. Ecology Letters 15: 1033-1041.

Melillo, J.M., Aber, J.D. & Muratore, J.F. 1982. Nitrogen and lignin control of hardwood leaf litter decomposition dynamics. Ecology 63: 621-626.

Nykvist, N. 1963. Leaching and decomposition of water-soluble organic substances from different types of leaf and needle litter. Studia Forestalia Suecica 3: 1-31.

Nykvist, N. 1962. Leaching and decomposition of litter V. Experiments on leaf litter of Alnus glutinosa, Fagus silvatica and Quercus robur. Oikos 13: 232-248.

Nykvist, N. 1961a. Leaching and decomposition of litter. III. Experiments on leaf litter of Betula verrucosa. Oikos 12: 249-263.

Nykvist, N. 1961b. Leaching and decomposition of litter. IV. Experiments on needle litter of Picea abies. Oikos 12: 264- 279.

Nykvist, N. 1959a. Leaching and decomposition of litter I. Experiments on leaf litter of Fraxinus excelsior. Oikos 10: 190-211.

Nykvist, N. 1959b. Leaching and decomposition of litter II. Experiments on needle litter of Pinus silvestris. Oikos 10: 212-224.

Prescott, C.E. 2005. Litter decomposition: what controls it and how can we alter it to sequester more carbon in forest soils? Biogeochemistry 101: 133-149.

Preston, C.M., Nault, J.R. Trofymow, J.A. & Smyth, C.E. 2009. Chemical changes during 6 years of decomposition of 11 sites in some Canadian forest sites. Part 1. Elemental composition, tanins, phenolics, and proximate fractions. Ecosystems 12: 1053-1077.

Qualls, R.G. 2005. Biodegradability of fractions of dissolved organic carbon leached from decomposing leaf litter. Environmental Science and Technology 39: 1616-1622.

Robinson, C. 2002. Controls on decomposition and soil nitrogen availability at high latitudes. Plant and Soil 242: 65-81.

Robinson, C.H. 2001. Cold adaptation in Arctic and Antarctic fungi. New Phytologist 151: 341-353.

Schimel, J.P. & Mikan, C. 2005. Changing microbial substrate use in Arctic tundra soils through a freeze-thaw cycle. Soil Biology and Biochemistry 37: 1411-1418.

Schreeg, L.A., Mack, M.C. & Turner, B.L. 2013. Nutrient-specific solubility patterns of leaf litter across 41 lowland tropical woody species. Ecology 94: 94-105.

Sinsabaugh, R.L., Carreiro, M.M. & Repert, D.A. 2002. Allocation of extracellular enzymatic activity in relation to litter composition, N deposition, and mass loss. Biogeochemistry 60: 1-24.

Sjursen, H., Michelsen, A. & Holmstrup, M. 2005. Effects of freeze-thaw cycles on microarthropods and nutrient availability in a sub-Arctic soil. Applied Soil Ecology 28: 79-93.

Taylor, B.R. & Parkinson, D. 1988. Does repeated freezing and thawing accelerate decay of leaf litter? Soil Biology and Biochemistry 20: 657-665.

Uchidaa, M., Mo, W., Nakatsubo, T., Tsuchiya, Y., Horikoshi, T. & Koizumi, H. 2005. Microbial activity and litter decomposition under snow cover in a cool-temperate broad-leaved deciduous forest. Agricultural and Forest Meteorology 134: 102-109.

Wardle, D.A., Bardgett, R.D., Klironomos, J.N., Setälä, H., van der Putten, W.H. & Wall, D.H. 2004. Ecological linkages between aboveground and belowground biota. Science 304: 1629-1633.

Wu, F., Peng, C., Zhu, J., Jian, Z., Tan, B. & Wanqin, Y. 2014. Impact of changes in freezing and thawing on foliar litter carbon release in alpine/subalpine forests along an altitudinal gradient in the eastern Tibetan Plateau. Biogeosciences 11: 9539-9564.

Wu, F., Yang, W., Zhang, J. & Deng, R. 2010. Litter decomposition in two subalpine forests during the freeze-thaw season. Acta Oecologica 36: 135-140.

Xia, L., Wu, F.Z., Yang, W.Q. & Tan, B. 2012. Contribution of soil fauna to the mass loss of Betula albosinensis leaf litter at early decompostion stage of subalpine forest litter in western Sichuan. Acta Ecologica Sinica 23: 301-306.

Yanai, Y., Toyota, K. & Okazaki, M. 2004. Effects of successive soil freeze-thaw cycles on soil microbial biomass and organic matter decomposition potential of soils. Soil Science and Plant Nutrition 50: 821-829.

Yang, G.R., Zhang, X.Q., Cai, D.S., Shi, X.H., Zhang, H. & Huang, C.B. 2012. Litter decomposition of dominant plantations in Guangxi and its effects on leachate quality. Chinese Journal of Applied Ecology 23: 9-16 (in Chinese with English abstract).

Yang, Q., Xu, M., Chi, Y., Zheng, Y., Shen, R. & Wang, S. 2014. Effects of freeze damage on litter production, quality and decomposition in a loblolly pine forest in central China. Plant and Soil 374: 449-458.

Zhu, J., He, X., Wu, F., Yang, W. & Tan, B. 2012. Decomposition of Abies faxoniana litter varies with freeze–thaw stages and altitudes in subalpine/alpine forests of southwest China. Scandinavian Journal of Forest Research 27: 586-596.

 

 

*Corresponding author; email: qgwu30@163.com

 

 

 

previous