Sains Malaysiana 45(7)(2016): 1063–1071

 

Initial Screening of Mangrove Endophytic Fungi for Antimicrobial Compounds and Heavy Metal Biosorption Potential

(Saringan Awal Kulat Bakau Endofit untuk Potensi Sebatian Antimikrob dan Bioserapan Logam Berat)

 

ONN, M. LING1*, LIM, P. TEEN2, AAZANI MUJAHID2, PETER PROKSCH3

& MORITZ MÜLLER1

 

1Biotechnology, School of Engineering Computing and Science, Swinburne University

of Technology, Sarawak Campus, 93350 Kuching, Sarawak, Malaysia

 

2Department of Aquatic Science, Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 93400 Kota Samarahan, Sarawak, Malaysia

 

3Institut für Pharmazeutische Biologie und Biotechnologie, Universität Düsseldorf, Germany

 

Received: 20 October 2013/Accepted: 29 January 2016

 

ABSTRACT

Endophytic fungi provide protection to their host plant and the fungi often produce antimicrobial compounds to aid the host fighting off pathogens. These bioactive compounds were secondary metabolites which were often produced as waste- or by-products. In the present study, endophytic fungi isolated from mangrove plants and soils were characterized and their antimicrobial production and bioremediation potential of heavy metals copper (Cu) and zinc (Zn) were assessed. Twelve (12) isolated and identified endophytic fungi belonged to seven species; Penicillium, Curvularia, Diaporthe, Aspergillus, Guignardia, Neusartorya and Eupenicillium. Antimicrobial activities of these 12 fungal endophytes were tested against Gram negative bacteria; Bacillus subtilis, Staphylococcus aureus, Gram positive bacteria; Escherichia coli and fungi; Candida albicans and Aspergillus niger among others. Two isolates (related to Guignardia sp. and Neusartoya sp.) showed strong antimicrobial (and antifungal) activity whereas the rest showed no activity. Compounds were isolated from both isolates and screened using HPLC. Both isolates displayed chemically very interesting chromatograms as they possessed a high diversity of basic chemical structures and peaks over a wide range of polarities, with structures similar to Trimeric catechin and Helenalin among others. For bioremediation assessment, the results showed maximum biosorption capacity for two isolates related to Curvularia sp. and Neusartorya sp., with the former removing 25 mg Cu/g biomass and the latter removing 24 mg Zn/g biomass. Our results indicated the potential of mangrove endophytic fungi in producing bioactive compounds and also highlighted their potential for the treatment of heavy metal-contaminated wastewater.

 

Keywords: Antimicrobial; bioactive compounds; biosorption; endophytic fungi; heavy metals; mangroves

ABSTRAK

Kulat endofit memberi perlindungan kepada perumah mereka dan seringkali menghasilkan sebatian antimikrob untuk membantu perumah melawan patogen. Sebatian bioaktif ini adalah metabolit sekunder yang sering dihasilkan sebagai bahan buangan atau keluaran sampingan. Dalam kajian ini, kulat endofit yang diasingkan daripada tumbuhan bakau dan tanah telah dikelaskan dan pengeluaran serta potensi bioremediasi logam berat tembaga (Cu) dan zink (Zn) telah dinilai. Duabelas (12) kulat endofit telah dipencilkan dan dikenal pasti terdiri daripada tujuh spesies; Penicillium, Curvularia, Diaporthe, Aspergillus, Guignardia, Neusartorya dan Eupenicillium. Aktiviti antimikrob daripada 12 kulat endofit ini telah diuji terhadap Gram bakteria negatif; Bacillus subtilis, Staphylococcus aureus, Gram bakteria positif; Escherichia coli dan kulat; Candida albicans dan Aspergillus niger. Dua pencilan (daripada Guignardia sp. dan Neusartoya sp.) telah menunjukkan aktiviti antimikrob yang kuat (dan anti-kulat) sedangkan yang lain tidak menunjukkan sebarang aktiviti. Sebatian telah diasingkan daripada kedua-dua pencilan diasing dan disaring menggunakan HPLC. Kedua-dua pencilan menunjukkan kromatogram yang sangat menarik kerana mereka mempunyai kepelbagaian yang tinggi dalam struktur kimia asas dan punca kepelbagai polariti, dengan struktur yang sama dengan Trimeric catechin dan Helenalin antara lainnya. Bagi penilaian potensi bioremediasi, keputusan menunjukkan keupayaan bioserapan maksimum pada dua pencilan yang berkaitan dengan Curvularia sp. dan Neusartorya sp., dengan Curvularia sp. mengeluarkan 25 mg Cu/g biojisim dan Neusartorya sp. mengeluarkan 24 mg Zn/g biojisim. Keputusan kami menunjukkan potensi kulat endofit bakau dalam menghasilkan sebatian bioaktif dan juga menyerlahkan potensi mereka untuk rawatan air yang tercemar dengan sisa logam berat.

 

Kata kunci: Antimikrob; bakau; bioserapan; kompaun bioaktif; kulat endofit; logam berat

REFERENCES

Alias, S.A., Zainuddin, N., Lee, C.W., Ebel, R., Othman, N.A., Mukhtar, M.R. & Awang, K. 2010. Antimicrobial activities of marine fungi from Malaysia. Botanica Marina 53: 507-513.

Aly, A.H., Debbab, A., Kjer, J. & Proksch, P. 2010. Fungal endophytes from higher plants: a prolific source of phytochemicals and other bioactive natural products. Fungal Diversity 41: 1-16.

Arnason, J.T., Mata, R. & Romeo, J.T. 1995. Phytochemistry of Medicinal Plants. New York: Springer.

Ayub, S., Ali, S.I., Khan, N.A. & Rao, R.A.K. 1998. Treatment of wastewater by agricultural waste. Environmental Protection Control Journal 2(1): 5-8.

Bensch, K., Groenewald, J.Z., Dijksterhuis, J., Starink-Willemse, M., Andersen, B., Summerell, B.A., Shin, H-D., Dugan, F.M., Schroers, H-J., Braun, U. & Crous, P.W. 2010. Studies Mycology 67: 1-94.

Bhimba, B.V., Agnel Defora Franco, D.A., Jose, G.M., Matthew, J.M. & Joel, E.L. 2011. Characterization of cytotoxic compound from mangrove derived fungi Irpex hydnoides VB4. Asian Pacific Journal of Tropical Biomedicine 1(3): 223-226.

Bong, S.W.L. 2015. Biodegradation of polyurethane polymer using endophytic fungi isolated from nepenthes ampullaria in Sarawak. http://hdl.handle.net/1959.3/406880.

Chaturvedi, D. 2011. Sesquiterpene lactones: Structural diversity and their biological activities. Science and Technology 661: 313-334.

Choo, J., Annie, N.A., Mujahid, A. & Müller, M. 2015. Heavy metal resistant endophytic fungi isolated from Nypa fruticans in Kuching Wetland National Park. Ocean Science Journal 50(2): 445-453.

Chunsriimyatav, G., Hoza, I., Valasek, P., Skrovankova, S., Banzragch, D. & Tsevegsuren, N. 2009. Anticancer activity of lignan from the aerial parts of Saussurea salicifolia (L.) DC. Czech Journal of Food Science 27: 256-258.

Food and Agricultural Organization (FAO). 2007.

Galgoczy, L., Kovacs, L., Viragh, M., Tako, M., Papp, T. & Vagvolgyi, C. 2011. Isolation and characterization of Neosartorya fischeri antifungal protein (NFAP). Peptides 32: 1724-1731.

Geetha, V., Venkatachalam, A., Suryanarayanan, T.S. & Doble, M. 2011. Isolation and characterization of new antioxidant and antibacterial compounds from algicolous marine fungus Curvularia Tuberculata. 2011 International Conference on Bioscience, Biochemistry and Bioinformatics 5: 302-304.

Hirasawa, M. & Takada, K. 2004. Multiple effects of green tea catechinon the antifungal activity of antimycotics against Candida albicans. Journal of Antimicrobial Chemotherapy 53(2): 225-229.

Houbraken, J. & Samson, R.A. 2011. Phylogeny of Penicillium and the segregation of Trichocomaceae into three families. Studies Mycology 70(1): 1-51.

Iskandar, N.L., Zainudin, N.A.I.M. & Tan, S.G., 2011. Tolerance and biosorption of copper (Cu) and lead (Pb) by filamentous fungi isolated from a freshwater ecosystem. Journal of Environmental Sciences 23(5): 824-830.

Juckpech, K., Pinyakong, O. & Rerngsamran, P. 2012. Degradation of polycyclic aromatic hydrocarbons by newly isolated Curvularia sp. F18, Lentinus sp. S5, and Phanerochaete sp. T20. Science Asia 38: 147-156.

Kannan, V.R., Hemambika, B. & Rani, M.J. 2011. Biosorption of heavy metals by immobilized and dead fungal cells: a comparative assessment. Journal of Ecology and the Natural Environment 3(5): 168-175.

Kapoor, A., Viraraghavan, T. & Cullimore, D.R. 1999. Removal of heavy metals using the fungus Aspergillus niger. Bioresource Technology 70(1): 95-104.

Karamchand, K.S., Sridhar, K.R. & Bhat, R. 2009. Diversity of fungi associated with estuarine sedge Cyperus malaccensis Lam. Journal of Agricultural Technology 5(1): 111-127.

Kaul, S., Wani, M., Dhar, K.L. & Dhar, M.K. 2008. Production and GC-MS trace analysis of methyl eugenol from endophytic isolate of Alternaria from rose. Annals of Microbiology 58(3): 443-445.

Kratochvil, D. & Volesky, B. 1998. Advances in the biosorption of heavy metals. Trends in Biotechnology 16(7): 291-300.

Kumaresan, V. & Suryanarayanan, T.S. 2002. Endophyte assemblages in young, mature and senescent leaves of Rhizophora apiculata: evidence for the role of endophytes in mangrove litter degradation. Fungal Diversity 9: 81-91.

Leitao, A.L. 2009. Potential of penicillium species in the bioremediation field. International Journal Environmental Resources Public Health 6(4): 1393-1417.

Lin, X., Huang, Y., Fang, M., Wang, J., Zheng, Z. & Su, W. 2005. Cytotoxic and antimicrobial metabolites from marine lignicolous fungi, Diaporthe sp. FEMS Microbiology Letters 251: 53-58.

Lu, X.L., Xu, Q.Z., Shen, Y.H., Liu, X.Y., Jiao, B.H., Zhang, W.D. & Ni, K.Y. 2010. Macrolactin S, a novel macrolactin antibiotic from marine Bacillus sp. Natural Product Research 22: 342-347.

Madavasamy, S. & Pannerselvam, A. 2012. Isolation, identification of fungi from Avicinnia marina Muthupet mangroves Thiruvarur Dt. Asian Journal of Plant Science and Research 2(4): 452-459.

Malloch, D. & Cain, R.F. 1972. The trichocomataceae: ascomycetes with Aspergillus, Paecilomyces, and Penicilliumim perfect states. Canadian Journal Botany 50: 2613-2628.

Masika, P.J., Sultana, N. & Afolayan, A.J. 2004. Antibacterial activity of two flavanoids isolated from Schotia latifolia. Pharmaceutical Biology 42: 105-108.

Naikwade, P., Mogle, U. & Sankpal, S. 2012. Phyloplanemycoflora associated with mangrove plant Ceriops tagal (Perr.). Science Research Reporter 2(1): 85-87.

Phuwiwat, W. & Soytong, K. 2001. The effect of Penicillium notatum on plant growth. Fungal Diversity 8: 143-148.

Ravindran, C., Naveenan, T., Varatharajan, G.R., Rajasabapathy, R. & Meena, R.M. 2012. Antioxidants in mangrove plants and endophytic fungal associations. Botanica Marina 55: 269-279.

Rodriguez, R. & Redman, R. 2008. More than 400 million years of evolution and some plants still can’t make it on their own: Plant stress tolerance via fungal symbiosis. Journal of Experimental Botany 59(5): 1109-1114.

Say, R., Yilmaz, N. & Denizli, A. 2003. Biosorption of cadmium, lead, mercury, and arsenic ions by the fungus Penicillium purpurogenum. Separation Science Technology 38(9): 2039-2053.

Sebastianes, F.L., Lacava, P.T., Favaro, L.C., Rodrigues, M.B., Araujo, W.L., Azevedo, J.L. & Pizzirani-Kleiner, A.A. 2012. Genetic transformation of Diaporthe phaseolorum, an endophytic fungus found in mangrove forests, mediated by Agrobacterium tumefaciens. Current Genetics 58(1): 21-33.

Schmidt, J.P. & Shearer, C.A. 2003. A checklist of mangrove-associated fungi, their geographical distribution and known host plants. Mycotaxon 85: 423-477.

Shearer, C.A., Descals, E., Kohlmeyer, B., Kohlmeyer, J., Marvanová, L., Padgett, D., Porter, D., Raja, H.A., Schmit, J.P., Thorton, H.A. & Voglymayr, H. 2007. Fungal biodiversity in aquatic habitats. Biodiversity and Conservation 16: 49-67.

Shimamura, T., Zhao, W.H. & Hu, Z.Q. 2007. Mechanism of action and potential for use of tea catechin as an anti-infective agent. Anti-Infective Agents in Medicinal Chemistry 6: 57-62.

Simonovicova, A. 2008. Use of mitosporic fungi for heavy metal removal from experimental water solutions. Czasopismo Techniczne 105(2): 207-212.

Strobel, G. & Daisy, B. 2003. Bioprospecting for microbial endophytes and their natural products. Microbiology and Molecular Biology Reviews 67(4): 491-502.

Tamura, K., Stecher, G., Peterson, D., Filipski, A. & Kumar, S. 2013. MEGA 6: Molecular evolutionary genetics analysis. Version 6.0. Molecular Biology and Evolution 30: 2725-2729.

Tran, H.B.Q., McRae, J.M., Lynch, F. & Palombo, E.A. 2010. Identification and bioactive properties of endophytic fungi isolated from phyllodes of Acacia species. In Current Research, Technology and Education Topics in Applied Microbiology and Microbial Biotechnology, edited by Mendez-Vilas, A. Extremadura: Formatex Research Center pp. 377-382.

Tumin, N.D., Chuah, A.L., Zawani, Z. & Rashid, S.A. 2008. Adsorption of copper from aqueous solution by elaisguineensis kernel activated carbon. Journal of Engineering Science and Technology 3: 180-189.

Varga, J., Vida, Z., Toth, B., Debets, F. & Horie, Y. 2000. Phylogenetic analysis of newly described Neosartorya species. Antonie van Leeuwenhoek 77: 235-239.

Wang, F.W. 2012. Bioactive metabolites from Guignardia sp., an endophytic fungus residing in Undaria pinnatifida. Chinese Journal of Natural Medicines 10(1): 72-76.

White, T.J., Bruns, T., Lee, S. & Taylor, J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: A Guide to Methods and Applications, edited by Innis, A., Gelfand, D.H. & Sninsky. J.J. San Diego: Academic Press. pp. 315-322.

Wong, C., Proksch, P., Tan, D., Lihan, S., Mujahid, A. & Müller, M. 2015a. Isolation, identification and screening of antimicrobial properties of the marine-derived endophytic fungi from marine brown seaweed. Microbiology Indonesia 9(4).

Wong, C. 2015b. Biosorption of copper by nepenthes ampullaria-associated-endophytic fungi. http://hdl.handle. net/1959.3/410871.

Xing, X.K., Chen, J., Xu, M.J., Lin, W.H. & Guo, S.X. 2011. Fungal endophytes associated with Sonneratia (Sonneratiaceae) mangrove plants on the south coast of China. Forest Pathology 41(4): 334-340.

Zhang, Y.J., Zhang, S., Liu, X.Z., Wen, H.A. & Wang, M. 2010. A simple method of genomic DNA extraction suitable foranalysis of bulk fungal strains. Letters in Applied Microbiology 51: 114-118.

 

 

*Corresponding author; email: onnmayling@hotmail.com

 

 

 

previous