Sains Malaysiana 45(7)(2016): 1063–1071
Initial
Screening of Mangrove Endophytic Fungi for Antimicrobial Compounds and Heavy
Metal Biosorption Potential
(Saringan Awal Kulat Bakau Endofit untuk
Potensi Sebatian Antimikrob dan Bioserapan Logam Berat)
ONN, M. LING1*, LIM, P. TEEN2, AAZANI MUJAHID2, PETER PROKSCH3
& MORITZ MÜLLER1
1Biotechnology, School
of Engineering Computing and Science, Swinburne University
of Technology, Sarawak Campus, 93350 Kuching, Sarawak, Malaysia
2Department of Aquatic
Science, Faculty of Resource Science and Technology, Universiti Malaysia
Sarawak, 93400 Kota Samarahan, Sarawak, Malaysia
3Institut für
Pharmazeutische Biologie und Biotechnologie, Universität Düsseldorf, Germany
Received: 20 October 2013/Accepted: 29 January 2016
ABSTRACT
Endophytic fungi provide protection to their host plant and the
fungi often produce antimicrobial compounds to aid the host fighting off
pathogens. These bioactive compounds were secondary metabolites which were
often produced as waste- or by-products. In the present study, endophytic fungi
isolated from mangrove plants and soils were characterized and their
antimicrobial production and bioremediation potential of heavy metals copper
(Cu) and zinc (Zn) were assessed. Twelve (12) isolated and identified
endophytic fungi belonged to seven species; Penicillium, Curvularia, Diaporthe, Aspergillus,
Guignardia, Neusartorya and Eupenicillium. Antimicrobial activities
of these 12 fungal endophytes were tested against Gram negative bacteria; Bacillus
subtilis, Staphylococcus aureus, Gram positive bacteria; Escherichia
coli and fungi; Candida albicans and Aspergillus niger among
others. Two isolates (related to Guignardia sp. and Neusartoya sp.)
showed strong antimicrobial (and antifungal) activity whereas the rest showed
no activity. Compounds were isolated from both isolates and screened using HPLC.
Both isolates displayed chemically very interesting chromatograms as they
possessed a high diversity of basic chemical structures and peaks over a wide
range of polarities, with structures similar to Trimeric catechin and Helenalin
among others. For bioremediation assessment, the results showed maximum
biosorption capacity for two isolates related to Curvularia sp. and Neusartorya
sp., with the former removing 25 mg Cu/g biomass and the latter removing 24
mg Zn/g biomass. Our results indicated the potential of mangrove endophytic
fungi in producing bioactive compounds and also highlighted their potential for
the treatment of heavy metal-contaminated wastewater.
Keywords: Antimicrobial; bioactive compounds; biosorption;
endophytic fungi; heavy metals; mangroves
ABSTRAK
Kulat endofit memberi perlindungan kepada perumah mereka dan
seringkali menghasilkan sebatian antimikrob untuk membantu perumah melawan
patogen. Sebatian bioaktif ini adalah metabolit sekunder yang sering dihasilkan
sebagai bahan buangan atau keluaran sampingan. Dalam kajian ini, kulat endofit
yang diasingkan daripada tumbuhan bakau dan tanah telah dikelaskan dan
pengeluaran serta potensi bioremediasi logam berat tembaga (Cu) dan zink (Zn)
telah dinilai. Duabelas (12) kulat endofit telah dipencilkan dan dikenal pasti
terdiri daripada tujuh spesies; Penicillium, Curvularia, Diaporthe, Aspergillus, Guignardia,
Neusartorya dan Eupenicillium. Aktiviti antimikrob daripada 12 kulat endofit
ini telah diuji terhadap Gram bakteria negatif; Bacillus subtilis,
Staphylococcus aureus, Gram bakteria positif; Escherichia coli dan
kulat; Candida albicans dan Aspergillus niger. Dua pencilan
(daripada Guignardia sp. dan Neusartoya sp.) telah menunjukkan
aktiviti antimikrob yang kuat (dan anti-kulat) sedangkan yang lain tidak
menunjukkan sebarang aktiviti. Sebatian telah diasingkan daripada kedua-dua
pencilan diasing dan disaring menggunakan HPLC.
Kedua-dua pencilan menunjukkan kromatogram yang sangat menarik kerana mereka
mempunyai kepelbagaian yang tinggi dalam struktur kimia asas dan punca
kepelbagai polariti, dengan struktur yang sama dengan Trimeric catechin dan
Helenalin antara lainnya. Bagi penilaian potensi bioremediasi, keputusan
menunjukkan keupayaan bioserapan maksimum pada dua pencilan yang berkaitan
dengan Curvularia sp. dan Neusartorya sp., dengan Curvularia
sp. mengeluarkan 25 mg Cu/g biojisim dan Neusartorya sp. mengeluarkan
24 mg Zn/g biojisim. Keputusan kami menunjukkan potensi kulat endofit bakau
dalam menghasilkan sebatian bioaktif dan juga menyerlahkan potensi mereka untuk
rawatan air yang tercemar dengan sisa logam berat.
Kata kunci: Antimikrob;
bakau; bioserapan; kompaun bioaktif; kulat endofit; logam berat
REFERENCES
Alias, S.A., Zainuddin, N., Lee, C.W., Ebel, R.,
Othman, N.A., Mukhtar, M.R. & Awang, K. 2010. Antimicrobial activities of
marine fungi from Malaysia. Botanica Marina 53: 507-513.
Aly, A.H., Debbab, A., Kjer, J. & Proksch,
P. 2010. Fungal endophytes from higher plants: a prolific source of
phytochemicals and other bioactive natural products. Fungal Diversity 41:
1-16.
Arnason, J.T., Mata, R. & Romeo, J.T. 1995. Phytochemistry
of Medicinal Plants. New York: Springer.
Ayub, S., Ali, S.I., Khan, N.A. & Rao,
R.A.K. 1998. Treatment of wastewater by agricultural waste. Environmental
Protection Control Journal 2(1): 5-8.
Bensch, K., Groenewald, J.Z., Dijksterhuis, J.,
Starink-Willemse, M., Andersen, B., Summerell, B.A., Shin, H-D., Dugan, F.M.,
Schroers, H-J., Braun, U. & Crous, P.W. 2010. Studies Mycology 67:
1-94.
Bhimba, B.V., Agnel Defora Franco, D.A., Jose,
G.M., Matthew, J.M. & Joel, E.L. 2011. Characterization of cytotoxic
compound from mangrove derived fungi Irpex hydnoides VB4. Asian
Pacific Journal of Tropical Biomedicine 1(3): 223-226.
Bong, S.W.L. 2015. Biodegradation of
polyurethane polymer using endophytic fungi isolated from nepenthes ampullaria
in Sarawak. http://hdl.handle.net/1959.3/406880.
Chaturvedi, D. 2011. Sesquiterpene lactones:
Structural diversity and their biological activities. Science and Technology 661: 313-334.
Choo, J., Annie, N.A., Mujahid, A. & Müller,
M. 2015. Heavy metal resistant endophytic fungi isolated from Nypa fruticans in Kuching Wetland National Park. Ocean Science Journal 50(2):
445-453.
Chunsriimyatav, G., Hoza, I., Valasek, P.,
Skrovankova, S., Banzragch, D. & Tsevegsuren, N. 2009. Anticancer activity
of lignan from the aerial parts of Saussurea salicifolia (L.) DC. Czech
Journal of Food Science 27: 256-258.
Food and Agricultural Organization (FAO). 2007.
Galgoczy, L., Kovacs, L., Viragh, M., Tako, M.,
Papp, T. & Vagvolgyi, C. 2011. Isolation and characterization of Neosartorya
fischeri antifungal protein (NFAP). Peptides 32: 1724-1731.
Geetha, V., Venkatachalam, A., Suryanarayanan,
T.S. & Doble, M. 2011. Isolation and characterization of new antioxidant
and antibacterial compounds from algicolous marine fungus Curvularia
Tuberculata. 2011 International Conference on Bioscience, Biochemistry
and Bioinformatics 5: 302-304.
Hirasawa, M. & Takada, K. 2004. Multiple
effects of green tea catechinon the antifungal activity of antimycotics against Candida albicans. Journal of Antimicrobial Chemotherapy 53(2):
225-229.
Houbraken, J. & Samson, R.A. 2011. Phylogeny
of Penicillium and the segregation of Trichocomaceae into three
families. Studies Mycology 70(1): 1-51.
Iskandar, N.L., Zainudin, N.A.I.M. & Tan,
S.G., 2011. Tolerance and biosorption of copper (Cu) and lead (Pb) by
filamentous fungi isolated from a freshwater ecosystem. Journal of
Environmental Sciences 23(5): 824-830.
Juckpech, K., Pinyakong, O. & Rerngsamran,
P. 2012. Degradation of polycyclic aromatic hydrocarbons by newly isolated Curvularia sp. F18, Lentinus sp. S5, and Phanerochaete sp. T20. Science
Asia 38: 147-156.
Kannan, V.R., Hemambika, B. & Rani, M.J.
2011. Biosorption of heavy metals by immobilized and dead fungal cells: a
comparative assessment. Journal of Ecology and the Natural Environment 3(5):
168-175.
Kapoor, A., Viraraghavan, T. & Cullimore,
D.R. 1999. Removal of heavy metals using the fungus Aspergillus niger. Bioresource
Technology 70(1): 95-104.
Karamchand, K.S., Sridhar, K.R. & Bhat, R.
2009. Diversity of fungi associated with estuarine sedge Cyperus malaccensis Lam. Journal of Agricultural Technology 5(1): 111-127.
Kaul, S., Wani, M., Dhar, K.L. & Dhar, M.K.
2008. Production and GC-MS trace analysis of methyl eugenol from endophytic
isolate of Alternaria from rose. Annals of Microbiology 58(3):
443-445.
Kratochvil, D. & Volesky, B. 1998. Advances
in the biosorption of heavy metals. Trends in Biotechnology 16(7):
291-300.
Kumaresan, V. & Suryanarayanan, T.S. 2002.
Endophyte assemblages in young, mature and senescent leaves of Rhizophora
apiculata: evidence for the role of endophytes in mangrove litter
degradation. Fungal Diversity 9: 81-91.
Leitao, A.L. 2009. Potential of penicillium
species in the bioremediation field. International Journal Environmental
Resources Public Health 6(4): 1393-1417.
Lin, X., Huang, Y., Fang, M., Wang, J., Zheng,
Z. & Su, W. 2005. Cytotoxic and antimicrobial metabolites from marine
lignicolous fungi, Diaporthe sp. FEMS Microbiology Letters 251:
53-58.
Lu, X.L., Xu, Q.Z., Shen, Y.H., Liu, X.Y., Jiao,
B.H., Zhang, W.D. & Ni, K.Y. 2010. Macrolactin S, a novel macrolactin
antibiotic from marine Bacillus sp. Natural Product Research 22:
342-347.
Madavasamy, S. & Pannerselvam, A. 2012.
Isolation, identification of fungi from Avicinnia marina Muthupet
mangroves Thiruvarur Dt. Asian Journal of Plant Science and Research 2(4):
452-459.
Malloch, D. & Cain, R.F. 1972. The
trichocomataceae: ascomycetes with Aspergillus, Paecilomyces, and Penicilliumim perfect states. Canadian Journal Botany 50:
2613-2628.
Masika, P.J., Sultana, N. & Afolayan, A.J.
2004. Antibacterial activity of two flavanoids isolated from Schotia
latifolia. Pharmaceutical Biology 42: 105-108.
Naikwade, P., Mogle, U. & Sankpal, S. 2012.
Phyloplanemycoflora associated with mangrove plant Ceriops tagal (Perr.). Science Research Reporter 2(1): 85-87.
Phuwiwat, W. & Soytong, K. 2001. The effect
of Penicillium notatum on plant growth. Fungal Diversity 8:
143-148.
Ravindran, C., Naveenan, T., Varatharajan, G.R.,
Rajasabapathy, R. & Meena, R.M. 2012. Antioxidants in mangrove plants and
endophytic fungal associations. Botanica Marina 55: 269-279.
Rodriguez, R. & Redman, R. 2008. More than
400 million years of evolution and some plants still can’t make it on their
own: Plant stress tolerance via fungal symbiosis. Journal of Experimental
Botany 59(5): 1109-1114.
Say, R., Yilmaz, N. & Denizli, A. 2003.
Biosorption of cadmium, lead, mercury, and arsenic ions by the fungus Penicillium
purpurogenum. Separation Science Technology 38(9): 2039-2053.
Sebastianes, F.L., Lacava, P.T., Favaro, L.C.,
Rodrigues, M.B., Araujo, W.L., Azevedo, J.L. & Pizzirani-Kleiner, A.A.
2012. Genetic transformation of Diaporthe phaseolorum, an endophytic
fungus found in mangrove forests, mediated by Agrobacterium tumefaciens. Current Genetics 58(1): 21-33.
Schmidt, J.P. & Shearer, C.A. 2003. A
checklist of mangrove-associated fungi, their geographical distribution and
known host plants. Mycotaxon 85: 423-477.
Shearer, C.A., Descals, E., Kohlmeyer, B.,
Kohlmeyer, J., Marvanová, L., Padgett, D., Porter, D., Raja, H.A., Schmit,
J.P., Thorton, H.A. & Voglymayr, H. 2007. Fungal biodiversity in aquatic
habitats. Biodiversity and Conservation 16: 49-67.
Shimamura, T., Zhao, W.H. & Hu, Z.Q. 2007.
Mechanism of action and potential for use of tea catechin as an anti-infective
agent. Anti-Infective Agents in Medicinal Chemistry 6: 57-62.
Simonovicova, A. 2008. Use of mitosporic fungi
for heavy metal removal from experimental water solutions. Czasopismo
Techniczne 105(2): 207-212.
Strobel, G. & Daisy, B. 2003. Bioprospecting
for microbial endophytes and their natural products. Microbiology and
Molecular Biology Reviews 67(4): 491-502.
Tamura, K., Stecher, G., Peterson, D., Filipski,
A. & Kumar, S. 2013. MEGA 6: Molecular evolutionary genetics analysis. Version
6.0. Molecular Biology and Evolution 30: 2725-2729.
Tran, H.B.Q., McRae, J.M., Lynch, F. &
Palombo, E.A. 2010. Identification and bioactive properties of endophytic fungi
isolated from phyllodes of Acacia species. In Current Research,
Technology and Education Topics in Applied Microbiology and Microbial
Biotechnology, edited by Mendez-Vilas, A. Extremadura: Formatex Research
Center pp. 377-382.
Tumin, N.D., Chuah, A.L., Zawani, Z. &
Rashid, S.A. 2008. Adsorption of copper from aqueous solution by elaisguineensis
kernel activated carbon. Journal of Engineering Science and Technology 3:
180-189.
Varga, J., Vida, Z., Toth,
B., Debets, F. & Horie, Y. 2000. Phylogenetic analysis of newly described Neosartorya species. Antonie van Leeuwenhoek 77: 235-239.
Wang, F.W. 2012.
Bioactive metabolites from Guignardia sp., an endophytic fungus residing
in Undaria pinnatifida. Chinese Journal of Natural Medicines 10(1):
72-76.
White, T.J., Bruns, T., Lee, S. & Taylor, J. 1990. Amplification
and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR
Protocols: A Guide to Methods and Applications, edited by Innis, A.,
Gelfand, D.H. & Sninsky. J.J. San Diego: Academic Press. pp. 315-322.
Wong, C., Proksch, P., Tan, D., Lihan, S., Mujahid, A. &
Müller, M. 2015a. Isolation, identification and screening of antimicrobial
properties of the marine-derived endophytic fungi from marine brown seaweed. Microbiology
Indonesia 9(4).
Wong, C. 2015b. Biosorption of copper by nepenthes
ampullaria-associated-endophytic fungi. http://hdl.handle. net/1959.3/410871.
Xing, X.K., Chen, J., Xu, M.J., Lin, W.H. & Guo, S.X.
2011. Fungal endophytes associated with Sonneratia (Sonneratiaceae) mangrove
plants on the south coast of China. Forest Pathology 41(4): 334-340.
Zhang, Y.J., Zhang, S., Liu, X.Z., Wen, H.A. & Wang, M.
2010. A simple method of genomic DNA extraction suitable foranalysis of bulk
fungal strains. Letters in Applied Microbiology 51: 114-118.
*Corresponding
author; email: onnmayling@hotmail.com
|