Sains Malaysiana 45(7)(2016): 1089–1095
Phylogenetic
Relationships of Waders (Charadriiformes: Scolopacidae) in Sarawak Inferred
from Cytochrome Oxidase I and Recombinant Activating Gene 1
(Hubungan
Filogenetik Burung Laut (Charadriiformers: Scolopacidae) di Sarawak yang
Tersimpul daripada Sitokrom Oksidase I dan Rekombinan Gen Pengaktif 1)
NURUL ASHIKEEN AB RAZAK1*, MUSTAFA ABDUL RAHMAN2 & ANDREW ALEK TUEN1
1Institute of
Biodiversity and Environmental Conservation, Universiti Malaysia Sarawak
94300 Kota Samarahan, Sarawak, Malaysia
2University
College Sabah Foundation, Jalan Sanzac, 88100 Sembulan, Kota Kinabalu, Sabah
Negeri di Bawah Bayu, Malaysia
Received:
25 November 2014/Accepted: 30 January 2016
ABSTRACT
Family Scolopacidae includes the sandpipers, shanks, snipes,
godwits and curlews. Systematic classifications of shorebirds at the higher
level have been successfully resolved. Nevertheless, the phylogeny of
shorebirds in the familial level is still poorly understood. Thus, this
phylogenetic study on Scolopacidae was conducted upon the framework provided by
the first sequence-based species-level phylogeny within the shorebirds to
determine the phylogenetic relationships among family members of Scolopacidae
in West Borneo, Sarawak using combined gene markers, mtDNA Cytochrome
Oxidise I (COI) and nucDNA Recombinant Activating Gene
1 (RAG1). A total of 1,342 base pair (bp) were inferred from
both COI and RAG1 gene from 45 sequences
constituted of 15 species Scolopacidae sampled from Sarawak namely Xenus cinereus, Actitis hypoleucos, Tringa
totanus, Tringa glareola, Tringa stagnatilis, Heteroscelus brevipes, Calidris
alba, Calidris ruficollis, Calidris ferruginea, Calidris tenuirostris, Calidris
alpina, Gallinago stenura, Gallinago megala, Numenius arquata and Numenius
phaeopus. The phylogenetic tree was constructed with Charadrius mongulus derived as an outgroup. The Bayesian Inference (BI)
tree constructed supported grouping of species into several lineages of
Numeniinae, Calidrinae, Scolopacinae and Tringinae. The groupings of species
into several lineages correlate with morphological features that contribute to
their adaptation and ability of the species to fit to their ecosystems.
Keywords: Cytochrome Oxidase I; phylogenetic; Recombinant
Activating Gene 1; waders
ABSTRAK
Famili Scolopacidae merangkumi burung kedidi biasa,
burung kedidi kaki merah, burung berkek dan burung kedidi kendi. Pengelasan sistematik burung
laut pada peringkat lebih tinggi telah berjaya diselesaikan.
Namun, filogeni burung laut pada peringkat famili masih belum difahami.
Sehubungan itu, kajian filogenetik ke atas Scolopacidae telah dijalankan
mengikut rangka kerja yang diberikan oleh filogeni berasaskan-urutan-pertama
aras-spesies dalam kalangan burung laut untuk mengenal pasti hubungan
filogenetik dalam kalangan family Scolopacidae di barat Borneo,
Sarawak, menggunakan penanda molekul berbeza; mtDNA Siktokrom Oksidase I (COI)
dan nucDNA Recombinan Gen Pengaktif 1 (RAG1).
Sejumlah 1,342 pasangan asas (bp) diperoleh daripada kedua-dua jenis
gen COI
dan RAG1
daripada 45 jujukan merangkumi 15 spesies Scolopacidae
yang disampel dari Sarawak iaitu Xenus cinereus, Actitis hypoleucos, Tringa totanus, Tringa glareola,
Tringa stagnatilis, Heteroscelus brevipes, Calidris alba, Calidris
ruficollis, Calidris ferruginea, Calidris tenuirostris, Calidris
alpina, Gallinago stenura, Gallinago megala, Numenius arquata dan
Numenius phaeopus. Pokok filogenetik telah dibina menggunakan
Charadrius mongulus sebagai kumpulan luar. Pokok
Bayesian Inference (BI)
yang dibina menyokong perkumpulan spesies mengikut keturunan masing-masing
iaitu Numeniinae, Calidrinae, Scolopacinae dan Tringinae.
Perkumpulan spesies kepada beberapa keturunan berkait rapat dengan
ciri morfologi yang telah menyumbang kepada adaptasi dan kebolehan
spesies ini menyesuaikan diri dalam ekosistem mereka.
Kata kunci: Burung laut; filogenetik; Rekombinan
Gen Pengaktif 1; Sitokrom Oksidase I
REFERENCES
Avise, J.C. 2004. Molecular Markers, Natural History, and
Evolution. 2nd ed. Sunderland, Massachusetts: Sinauer.
Baker, A.J., Pereira, S.L. & Paton,
T.A. 2007. Phylogenetic relationships and
divergence times of Charadriiformes genera: multigene evidence for the
Cretaceous origin of at least 14 clades of shorebirds. Biology Letters 3:
205-209.
Banks, J., van Buren, A., Cherel, Y. & Whitfield, J.B. 2006. Genetic evidence for three
species of Rockhopper Penguins Eudyptes chrysocome. Polar
Biol. DOI 10.1007/s00300- 006-0160-3.
Barrett, D. & Schluter, D. 2008. Adaptation
from standing genetic variation. Trends in Ecology & Evolution 23(1):
38-44.
Braun, E.L. & Kimball, R.T. 2002. Examining basal avian
divergences with mitochondrial sequences: model complexity, taxon sampling and
sequence length. Syst. Biol. 51: 614-625.
Brown, W.M. 1983. Evolution of animal
mitochondrial DNA. In Evolution of Genes and Proteins, edited by
Nei, M. & Koehn, R.K. Sunderland, Massachussets: Sinauer Associates.
Clements, J.F., Schulenberg, T.S., Iliff, M.J., Sullivan,
B.L. & Wood, C.L. 2010. The Clements Checklist of Birds of the World:
Version 6.5. New York: Cornell University.
Cummings, M.P., Otto S.P. &
Wakeley, J. 1995. Sampling properties of DNA sequence
data in phylogenetic analysis. Mol. Biol. Evol. 12: 814-822.
Ericson, P.G.P., Envall, I., Irestedt,
M. & Norman, J.A. 2003. Inter-familial relationships of the shorebirds (Aves: Charadriiformes) based on
nuclear DNA sequence data. BMC Evol. Biol. 3: 16.
Farris, J.S., KaÈ llersjoÈ, M., Kluge,
A.G. & Bult, C. 1995. Constructing a significance test for incongruence. Syst. Biol. 44:
570-572.
Gibson, R. & Baker, A. 2012. Multiple gene sequences
resolve phylogenetic relationships in shorebird suborder Scolopaci (Aves:
Charadriiformes). Molecular Phylogenetics and Evolution 64: 66-72.
Gibson, R. 2010. Phylogenetic relationships among the
Scolopaci (Aves: Charadriiformes): Implications for the study of behavioral evolution.
M.Sc. Thesis. University of Toronto (Unpublished).
Grewe, P.M., Krueger, C.C., Aquadro,
C.F., Bermingham, E., Kincaid, H.L. & May, B. 1993. Mitochondrial variation among lake trout (Salvenilus
namaycush) strains stocked into Lake Ontario. Can. J. Fish. Aquat. Sci. 50:
2397-2403.
Groth, J.G. & Barrowclough, G.F. 1999. Basal divergences in birds and the phylogenetic utility of the
nuclear RAG-1 gene. Mol. Phylogenet. Evol. 12: 115-123.
Huelsenbeck, J.P. & Ronquist, F.
2001. Mrbayes: Bayesian inference of
phylogenetic trees. Bioinformatics 17: 754-755.
Jehl Jr., J.R. 1968. Relationships in the Charadrii
(shorebirds): a taxonomic study based on color patterns of the downy young. Mem. San Diego Soc. Nat. Hist. 3: 1-54.
Kimura, M. 1980. A simple method for estimating the
evolutionary rate of base substitutions through comparative studies of
nucleotide sequences. Journal of Molecular Evolution 16: 111-120.
Livezey, B.C. 2010. Progress and obstacles
in the phylogenetics of modern birds. In Evolution of Modern Birds,
edited by Dyke, G. & Chiappe, L. Berkeley: University
of California Press. pp. 117-145.
Mayr, G. 2011. The phylogeny of Charadriii form birds
(shorebirds and allies) - reassessing the conflict between morphology and
molecules. Zool. J. Linn. Soc. 161: 916-934.
Myers, S. 2009. A Field Guide to the Birds
of Borneo. UK: New Holland Publication.
Palumbi, S.A., Martin, S., Romano, W.O.,
McMillan, L., Stice, L. & Grabowski, G. 1991. The Simple Fool's Guide to PCR.
Honolulu, HI: Department of Zoology and Kewalo Marine Laboratory,
Univ. of Hawaii.
Paton, T.A. & Baker, A.J. 2006. Sequences from 14
mitochondrial genes provide a well-supported phylogeny of the charadriiform
birds congruent with the nuclear RAG-1 tree. Molecular Phylogenetics and
Evolution 39: 657-667.
Paton, T.A., Baker, A.J., Groth, J.G.
& Barrowclough, G.F. 2003. RAG-1
sequences resolve phylogenetic relationships within Charadriiform birds. Mol.
Phylogenet Evol. 29(2): 268-278.
Pereira, S.L. & Baker, A.J. 2005. Multiple gene evidence
for parallel evolution and retention of ancestral morphological states in the
shanks (Charadriiformes: Scolopacidae). Condor 107: 514-526.
Pereira, S.L., Baker, A.J. &
Wajntal, A. 2002. Combined nuclear and mitochondrial DNA
sequences resolve generic relationships within the Cracidae (Galliformes Aves). Syst. Biol. 51: 946-958.
Rosenberg, N.A. & Feldman, M.W. 2001. The
Relationship between Coalescence Times and Population Divergence Times. Modern Developments in Theoretical Population Genetics. Oxford: Oxford University Press.
Saitou, N. & Nei, M. 1987. The neighbor-joining method - a new
method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4:
406-425.
Sibley, C. & Ahlquist, J. 1990. Phylogeny and
Classification of Birds: A Study in Molecular Evolution. New Haven: Yale
University Press.
Smythies, B. 1999. The Birds of Borneo. 4th
ed. Kota Kinabalu: Natural History Publications Borneo.
Swofford, D.L. 2002. PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods). Version 4. Massachusetts: Sinauer Associates.
Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M.
& Kumar, S. 2011. MEGA 5: Molecular evolutionary genetics analysis using
maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular
Biology and Evolution 28: 2731-2739.
Thomas, G.H., Wills, M.A. & Székely, T. 2004. A super tree approach to shorebird phylogeny. BioMed
Central Evolutionary Biology 4: 1-18.
Thompson, J.D., Gibson, T.J. &
Plewniak, F. 1997. The clustal X windows interface:
Flexible strategies for multiple sequence alignment aided by the quality
analysis tools. Nucleic Acids Res. 24: 4876-4882.
Weibel, A.C. & Moore, W.S. 2002. Molecular phylogeny of
a cosmopolitan group of woodpeckers (genus Picoides) gased on COI and
cyt b mitochondrial gene sequences. Mol. Phylogenet. Evol. 22:
65-75.
*Corresponding
author; email: ekinrazak@gmail.com
|