Sains Malaysiana 45(7)(2016): 1113–1120
Inhibitors
of Leishmania mexicana Phosphoglycerate Mutase Identified by Virtual
Screening
and Verified by Inhibition Studies
(Pengenalpastian
Perencat Fosfogliserat Mutase daripada Leishmania mexicana melalui Saringan
Maya dan Pengesahannya menerusi Kajian Perencatan)
FAZIA ADYANI AHMAD FUAD1*, DOUGLAS R. HOUSTON2, PAUL A.M. MICHELS2,
LINDA A. FOTHERGILL-GILMORE2 & MALCOLM D. WALKINSHAW2
1Department
of Biotechnology Engineering, Faculty of Engineering, International Islamic
University Malaysia, 50728 Gombak, Kuala Lumpur, Malaysia
2Centre for Transitional
and Chemical Biology, Institute of Quantitative Biology, Biochemistry
and Biotechnology, The University of Edinburgh, The King's Buildings,
Edinburgh EH9 3BF, United Kingdom
Received:
10 September 2015/Accepted: 11 February 2016
ABSTRACT
Cofactor-independent phosphoglycerate mutase has been proposed as
a therapeutic target for the treatment of trypanosomatid diseases. In this
paper, we report the identification of compounds that could potentially be
developed as selective inhibitors of cofactor-independent phosphoglycerate
mutase from Leishmania mexicana (LmiPGAM).
Virtual screening was used in this search, as well as compounds identified by
high-throughput screening. A ligand-based virtual screen programme, ultra fast
shape recognition with atom types (UFSRAT), was used to screen for
compounds resembling the substrate/product, before a structure-based approach
was applied using AutoDock 4 and AutoDock Vina in a consensus docking scheme.
In this way eight selected compounds were identified. In addition, three
compounds from the Library of Pharmacologically Active Compounds (LOPAC)
were selected from the published results of high-throughput screening of this
library. The inhibitory effects of these compounds were tested at a fixed
concentration of 1 mM. The results showed that seven compounds inhibited LmiPGAM activity and of these, two compounds (one each from
high-throughput and virtual screening) showed substantial inhibition (i.e. 14%
and 49% remaining activity, respectively). Taken together, the findings from
this study indicate that these compounds have potential as novel inhibitors
that specifically target LmiPGAM.
Keywords: Cofactor-independent phosphoglycerate mutase;
glycolysis; Leishmania mexicana;
virtual screening analyses
ABSTRAK
Fosfogliserat mutase bebas-kofaktor telah dicadangkan sebagai
sasaran terapeutik bagi penyakit yang disebabkan oleh tripanosomatida. Di sini
kami melaporkan pengenalpastian sebatian yang berpotensi untuk dibangunkan
sebagai perencat kepada fosfogliserat mutase bebas-kofaktor daripada Leishmania mexicana (LmiPGAM).
Saringan secara maya telah diaplikasikan dalam kajian ini, selain daripada
beberapa jenis sebatian yang dikenalpasti melalui saringan berprosesan tinggi.
Program saringan maya berasaskan ligan, Ultra Fast Shape Recognition with Atom
Types (UFSRAT), telah digunakan untuk menyaring sebatian yang
menyerupai substrat/produk, sebelum pendekatan berasaskan struktur digunakan
menerusi program AutoDock 4 dan AutoDock Vina di dalam skim simulasi pengikatan
ligan kepada reseptor (docking) yang konsensus. Melalui kaedah ini, lapan sebatian
terpilih telah dikenal pasti. Selain daripada itu, tiga sebatian daripada
Library of Pharmacologically Active Compounds (LOPAC)
yang dikenal pasti melalui kaedah saringan berprosesan tinggi terhadap
perpustakaan ini yang telah diterbitkan turut dipilih untuk analisis lanjutan.
Kesan perencatan kesemua sebatian ini telah diuji pada kepekatan yang
ditetapkan pada 1 mM. Hasil analisis ini telah menunjukkan bahawa tujuh
sebatian merencat aktiviti LmiPGAM, dengan dua sebatian
(masing-masing daripada saringan berprosesan tinggi dan maya) menunjukkan
perencatan yang ketara (14% dan 49% baki aktiviti). Secara keseluruhannya,
hasil daripada kajian ini menunjukkan bahawa sebatian ini berpotensi sebagai
perencat novel yang spesifik kepada LmiPGAM.
Kata kunci: Analisis
saringan maya; fosfogliserat mutase bebas-kofaktor; glikolisis; Leishmania Mexicana
REFERENCES
Blackburn, E.A., Fuad, F.A.A., Morgan, H.P., Nowicki, M.W.,
Wear, M.A., Michels, P.A.M., Fothergill-Gilmore, L.A. & Walkinshaw, M.D.
2014. Trypanosomatid phosphoglycerate mutases have multiple conformational and
oligomeric states. Biochem. Biophys. Res. Commun. 450: 936-941.
Chevalier, N., Rigden, D.J., van Roy, J., Opperdoes, F.R.
& Michels, P.A.M. 2000. Trypanosoma brucei contains a 2,3-bisphosphoglycerate
independent phosphoglycerate mutase. Eur. J. Biochem. 267: 1464-1472.
Cosconati, S., Forli, S., Perryman, A.L., Harris, R.,
Goddsell, D.S. & Olson, A.J. 2010. Virtual screening with AutoDock: Theory
and practice. Expert Opin. Drug Discov. 5: 597-607.
Crowther, G.J., Booker, M.L., He, M., Li, T., Raverdy, S.,
Novelli, J.F., He, P., Dale, N.R.G., Fife, A.M., Barker, R.H., Kramer, M.L.,
van Voorhis, W.C., Carlow, C.K.S. & Wang, M.W. 2014. Cofactor-independent
phosphoglycerate mutase from nematodes has limited druggability, as revealed by
two high-throughput screens. PLoS Negl. Trop. Dis. 8: e2628.
de Winter, H. 2014. Silicos-it Chemoinformatics Services and
Software http://silicos-it.be.s3-website-eu.west-1. amazonaws.com/.
Dolinsky, T.J., Czodrowski, P., Li, H., Nielsen, J.E.,
Jensen, J.H., Klebe, G. & Baker, N.A. 2007. PDB2PQR: Expanding and
upgrading automated preparation of biomolecular structures for molecular
simulations. Nucleic Acids Res. 35(Web Server issue): 522-525.
Fothergill-Gilmore, L.A. & Michels, P.A.M. 1993.
Evolution of Glycolysis. Progr. Biophys. Mol. Biol. 59: 105-236.
Fuad, F.A.A. 2012. Effects of metal ions on the structural
and biochemical properties of trypanosomatid phosphoglycerate mutase. PhD
thesis. Institute of Structural and Molecular Biology, School of Biological
Sciences. The University of Edinburgh, Edinburgh (Unpublished).
Fuad, F.A.A., Fothergill-Gilmore, L.A., Nowicki, M.W.,
Eades, L.J., Morgan, H.P., McNae, I.W., Michels, P.A.M. & Walkinshaw, M.D.
2011. Phosphoglycerate mutase from Trypanosoma brucei is hyperactivated
by cobalt in vitro, but not in vivo. Metallomics 3:
1310-1317.
Gohlke, H., Hendlich, M. & Klebe, G. 2000.
Knowledge-based scoring function to predict protein-ligand interactions. J.
Mol. Biol. 295: 337-356.
Golgher, D., Vianna, C.H. & Moura, A.C. 2011. Drugs
against leishmaniasis: Overview of market needs and pipeline. Drug Dev. Res. 72: 463-470.
Hann, M.M. & Oprea, T.I. 2004. Pursuing the leadlikeness
concept in pharmaceutical research. Curr. Opin. Chem. Biol. 8: 255-263.
Hawkins, P.C.D., Skillman, A.G. & Nicholls, A. 2007.
Comparison of shape-matching and docking as virtual screening tools. J. Med.
Chem. 50: 74-82.
Houston, D.R. & Walkinshaw, M.D. 2013. Consensus
docking: Improving the reliability of docking in a virtual screening context. J.
Chem. Inf. Model. 53: 384-390.
Hsin, K.Y., Morgan, H.P., Shave, S.R., Hinton, A.C., Taylor,
P. & Walkinshaw, M.D. 2011. EDULISS: A small-molecule database with data
mining and pharmacophore searching capabilities. Nucleic Acids Res. 39(Database
issue): 1042- 1048.
Huey, R., Morris, G.M., Olson, A.J. & Goodsell, D.S.
2007. A semi-empirical free energy force field with charge-based desolvation. J.
Comput. Chem. 28: 1145-1152.
Jedrzejas, M.J., Chander, M., Setlow, P. & Krishnasamy,
G. 2000. Structure and mechanism of action of a novel phosphoglycerate mutase
from Bacillus stearothermophilus. EMBO J. 19: 1419-1431.
Li, H., Robertson, A.D. & Jensen, J.H. 2005. Very fast
empirical prediction and rationalization of protein pKa values. Proteins 61:
704-721.
Lipinski, C.A., Lombardo, F., Dominy, B.W. & Feeney,
P.J. 1997. Experimental and computational approaches to estimate solubility and
permeability in drug discovery and development settings. Adv. Drug Del. Rev. 23: 3-25.
Mercaldi, G., Pereira, H., Cordeiro, A., Michels, P.A.M.
& Thiemann, O. 2012. Phosphoglycerate mutase from Trypanosoma brucei:
Structure and catalytic mechanism FEBS J. 279: 2012-2021.
Messaoudi, B., Belguith, H. & Ben Hamida, J. 2013.
Homology modelling and virtual screening approaches to identify potent
inhibitors of VEB-1 β-lactamase. Theor. Biol. Med. Modelling 10:
22. doi: 10.1186/1742-4682-10-22.
Naderer, T., Ellis, M.A., Sernee, M.F., De Souza, D.P.,
Curtis, J., Handman, E. & McConville, M.J. 2006. Virulence of Leishmania
major in macrophages and mice requires the gluconeogenic enzyme
fructose-1,6-bisphosphatase. Proc. Natl. Acad. Sci. U.S.A. 103:
5502-5507.
Nowicki, M.W., Kuaprasert, B., McNae, I.W., Morgan, H.P.,
Harding, M.M., Michels, P.A.M., Fothergill-Gilmore, L.A. & Walkinshaw, M.D.
2009. Crystal structures of Leishmania mexicana phosphoglycerate mutase
suggest a one-metal mechanism and a new enzyme subclass. J. Mol. Biol. 394:
535-543.
Nukui, M., Mello, L.V., Littlejohn, J.E., Setlow, B.,
Setlow, P., Kim, K., Leighton, T. & Jedrzejas, M.J. 2007. Structure and
molecular mechanism of Bacillus anthracis cofactor-independent
phosphoglycerate mutase: A crucial enzyme for spores and growing cells of Bacillus species. Biophys. J. 92:
977-988.
O'Boyle, N.M., Banck, M., James, C.A., Morley, C., Vandermeersch,
T. & Hutchison, G.R. 2011. Open Babel: An open chemical toolbox.
J. Cheminform. 3: 33.
Roychowdhury, A., Kundu, A., Rose, M., Gujar, A., Mukherjee,
S. & Das, A.K. 2015. Complete catalytic cycle of cofactor-independent
phosphoglycerate mutase involves a spring-loaded mechanism. FEBS J. 282:
1097-1110.
Sauton, N., Lagorce, D., Villoutreix, B.O. & Miteva,
M.A. 2008. MS-DOCK: Accurate multiple conformation generator and rigid docking protocol for multi-step
virual ligand screening. BMC Bioinformatics 9: 184-196.
Shave,
S., Blackburn, E.A., Adie, J., Houston, D.R., Auer, M., Webster, S.P., Taylor,
P. & Walkinshaw, M.D. 2015. UFSRAT: Ultra-fast shape recognitions with atom
types – the discovery of novel bioactive small molecular scaffolds for
FKBP12 and 11bHSD1. PLoS ONE 10(2): e0116570.
Taylor,
P., Blackburn, E., Sheng, Y.G., Harding, S., Hsin, K-Y., Kan, D., Shave, S.
& Walkinshaw, M.D. 2008. Ligand discovery and virtual screening using the
program LIDAEUS. British J. Pharm. 153: S55-S67.
Trott,
O. & Olson, A.J. 2010. AutoDock Vina: Improving the speed and accuracy of
docking with a new scoring function, efficient optimization, and
multithreading. J. Comput. Chem. 31: 455-461.
Verlinde,
C.L.M.J., Hannaert, V., Blonski, C., Willson, M., Périé, J.J.,
Fothergill-Gilmore, L.A., Opperdoes, F.R., Gelb, M.H., Hol, W.G.J. &
Michels, P.A.M. 2001. Glycolysis as a target for the design of new
anti-trypanosome drugs. Drug Resist. Updat. 4: 50-65.
Wang,
R., Lai, L. & Wang, S. 2002. Further development and validation of
empirical scoring functions for structure-based binding affinity prediction. J.
Comput. Aided Mol. Des. 16: 11-26.
Wang,
R. & Wang, S. 2001. How does consensus scoring work for virtual library
screening? An idealized computer experiment. J. Chem. Inf. Comput. Sci. 41:
1422-1426.
WHO-NTD
report. 2015. http://www.who.int/neglected_ diseases/9789241564861/en/.
*Corresponding
author; email: fazia_adyani@iium.edu.my |