Sains Malaysiana 45(7)(2016): 1113–1120

 

Inhibitors of Leishmania mexicana Phosphoglycerate Mutase Identified by Virtual

Screening and Verified by Inhibition Studies

(Pengenalpastian Perencat Fosfogliserat Mutase daripada Leishmania mexicana melalui Saringan Maya dan Pengesahannya menerusi Kajian Perencatan)

 

FAZIA ADYANI AHMAD FUAD1*, DOUGLAS R. HOUSTON2, PAUL A.M. MICHELS2,

LINDA A. FOTHERGILL-GILMORE2 & MALCOLM D. WALKINSHAW2

 

1Department of Biotechnology Engineering, Faculty of Engineering, International Islamic University Malaysia, 50728 Gombak, Kuala Lumpur, Malaysia

 

2Centre for Transitional and Chemical Biology, Institute of Quantitative Biology, Biochemistry and Biotechnology, The University of Edinburgh, The King's Buildings, Edinburgh EH9 3BF, United Kingdom

 

Received: 10 September 2015/Accepted: 11 February 2016

 

ABSTRACT

Cofactor-independent phosphoglycerate mutase has been proposed as a therapeutic target for the treatment of trypanosomatid diseases. In this paper, we report the identification of compounds that could potentially be developed as selective inhibitors of cofactor-independent phosphoglycerate mutase from Leishmania mexicana (LmiPGAM). Virtual screening was used in this search, as well as compounds identified by high-throughput screening. A ligand-based virtual screen programme, ultra fast shape recognition with atom types (UFSRAT), was used to screen for compounds resembling the substrate/product, before a structure-based approach was applied using AutoDock 4 and AutoDock Vina in a consensus docking scheme. In this way eight selected compounds were identified. In addition, three compounds from the Library of Pharmacologically Active Compounds (LOPAC) were selected from the published results of high-throughput screening of this library. The inhibitory effects of these compounds were tested at a fixed concentration of 1 mM. The results showed that seven compounds inhibited LmiPGAM activity and of these, two compounds (one each from high-throughput and virtual screening) showed substantial inhibition (i.e. 14% and 49% remaining activity, respectively). Taken together, the findings from this study indicate that these compounds have potential as novel inhibitors that specifically target LmiPGAM.

 

Keywords: Cofactor-independent phosphoglycerate mutase; glycolysis; Leishmania mexicana; virtual screening analyses

 

ABSTRAK

Fosfogliserat mutase bebas-kofaktor telah dicadangkan sebagai sasaran terapeutik bagi penyakit yang disebabkan oleh tripanosomatida. Di sini kami melaporkan pengenalpastian sebatian yang berpotensi untuk dibangunkan sebagai perencat kepada fosfogliserat mutase bebas-kofaktor daripada Leishmania mexicana (LmiPGAM). Saringan secara maya telah diaplikasikan dalam kajian ini, selain daripada beberapa jenis sebatian yang dikenalpasti melalui saringan berprosesan tinggi. Program saringan maya berasaskan ligan, Ultra Fast Shape Recognition with Atom Types (UFSRAT), telah digunakan untuk menyaring sebatian yang menyerupai substrat/produk, sebelum pendekatan berasaskan struktur digunakan menerusi program AutoDock 4 dan AutoDock Vina di dalam skim simulasi pengikatan ligan kepada reseptor (docking) yang konsensus. Melalui kaedah ini, lapan sebatian terpilih telah dikenal pasti. Selain daripada itu, tiga sebatian daripada Library of Pharmacologically Active Compounds (LOPAC) yang dikenal pasti melalui kaedah saringan berprosesan tinggi terhadap perpustakaan ini yang telah diterbitkan turut dipilih untuk analisis lanjutan. Kesan perencatan kesemua sebatian ini telah diuji pada kepekatan yang ditetapkan pada 1 mM. Hasil analisis ini telah menunjukkan bahawa tujuh sebatian merencat aktiviti LmiPGAM, dengan dua sebatian (masing-masing daripada saringan berprosesan tinggi dan maya) menunjukkan perencatan yang ketara (14% dan 49% baki aktiviti). Secara keseluruhannya, hasil daripada kajian ini menunjukkan bahawa sebatian ini berpotensi sebagai perencat novel yang spesifik kepada LmiPGAM.

 

Kata kunci: Analisis saringan maya; fosfogliserat mutase bebas-kofaktor; glikolisis; Leishmania Mexicana

REFERENCES

Blackburn, E.A., Fuad, F.A.A., Morgan, H.P., Nowicki, M.W., Wear, M.A., Michels, P.A.M., Fothergill-Gilmore, L.A. & Walkinshaw, M.D. 2014. Trypanosomatid phosphoglycerate mutases have multiple conformational and oligomeric states. Biochem. Biophys. Res. Commun. 450: 936-941.

Chevalier, N., Rigden, D.J., van Roy, J., Opperdoes, F.R. & Michels, P.A.M. 2000. Trypanosoma brucei contains a 2,3-bisphosphoglycerate independent phosphoglycerate mutase. Eur. J. Biochem. 267: 1464-1472.

Cosconati, S., Forli, S., Perryman, A.L., Harris, R., Goddsell, D.S. & Olson, A.J. 2010. Virtual screening with AutoDock: Theory and practice. Expert Opin. Drug Discov. 5: 597-607.

Crowther, G.J., Booker, M.L., He, M., Li, T., Raverdy, S., Novelli, J.F., He, P., Dale, N.R.G., Fife, A.M., Barker, R.H., Kramer, M.L., van Voorhis, W.C., Carlow, C.K.S. & Wang, M.W. 2014. Cofactor-independent phosphoglycerate mutase from nematodes has limited druggability, as revealed by two high-throughput screens. PLoS Negl. Trop. Dis. 8: e2628.

de Winter, H. 2014. Silicos-it Chemoinformatics Services and Software http://silicos-it.be.s3-website-eu.west-1. amazonaws.com/.

Dolinsky, T.J., Czodrowski, P., Li, H., Nielsen, J.E., Jensen, J.H., Klebe, G. & Baker, N.A. 2007. PDB2PQR: Expanding and upgrading automated preparation of biomolecular structures for molecular simulations. Nucleic Acids Res. 35(Web Server issue): 522-525.

Fothergill-Gilmore, L.A. & Michels, P.A.M. 1993. Evolution of Glycolysis. Progr. Biophys. Mol. Biol. 59: 105-236.

Fuad, F.A.A. 2012. Effects of metal ions on the structural and biochemical properties of trypanosomatid phosphoglycerate mutase. PhD thesis. Institute of Structural and Molecular Biology, School of Biological Sciences. The University of Edinburgh, Edinburgh (Unpublished).

Fuad, F.A.A., Fothergill-Gilmore, L.A., Nowicki, M.W., Eades, L.J., Morgan, H.P., McNae, I.W., Michels, P.A.M. & Walkinshaw, M.D. 2011. Phosphoglycerate mutase from Trypanosoma brucei is hyperactivated by cobalt in vitro, but not in vivo. Metallomics 3: 1310-1317.

Gohlke, H., Hendlich, M. & Klebe, G. 2000. Knowledge-based scoring function to predict protein-ligand interactions. J. Mol. Biol. 295: 337-356.

Golgher, D., Vianna, C.H. & Moura, A.C. 2011. Drugs against leishmaniasis: Overview of market needs and pipeline. Drug Dev. Res. 72: 463-470.

Hann, M.M. & Oprea, T.I. 2004. Pursuing the leadlikeness concept in pharmaceutical research. Curr. Opin. Chem. Biol. 8: 255-263.

Hawkins, P.C.D., Skillman, A.G. & Nicholls, A. 2007. Comparison of shape-matching and docking as virtual screening tools. J. Med. Chem. 50: 74-82.

Houston, D.R. & Walkinshaw, M.D. 2013. Consensus docking: Improving the reliability of docking in a virtual screening context. J. Chem. Inf. Model. 53: 384-390.

Hsin, K.Y., Morgan, H.P., Shave, S.R., Hinton, A.C., Taylor, P. & Walkinshaw, M.D. 2011. EDULISS: A small-molecule database with data mining and pharmacophore searching capabilities. Nucleic Acids Res. 39(Database issue): 1042- 1048.

Huey, R., Morris, G.M., Olson, A.J. & Goodsell, D.S. 2007. A semi-empirical free energy force field with charge-based desolvation. J. Comput. Chem. 28: 1145-1152.

Jedrzejas, M.J., Chander, M., Setlow, P. & Krishnasamy, G. 2000. Structure and mechanism of action of a novel phosphoglycerate mutase from Bacillus stearothermophilus. EMBO J. 19: 1419-1431.

Li, H., Robertson, A.D. & Jensen, J.H. 2005. Very fast empirical prediction and rationalization of protein pKa values. Proteins 61: 704-721.

Lipinski, C.A., Lombardo, F., Dominy, B.W. & Feeney, P.J. 1997. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Del. Rev. 23: 3-25.

Mercaldi, G., Pereira, H., Cordeiro, A., Michels, P.A.M. & Thiemann, O. 2012. Phosphoglycerate mutase from Trypanosoma brucei: Structure and catalytic mechanism FEBS J. 279: 2012-2021.

Messaoudi, B., Belguith, H. & Ben Hamida, J. 2013. Homology modelling and virtual screening approaches to identify potent inhibitors of VEB-1 β-lactamase. Theor. Biol. Med. Modelling 10: 22. doi: 10.1186/1742-4682-10-22.

Naderer, T., Ellis, M.A., Sernee, M.F., De Souza, D.P., Curtis, J., Handman, E. & McConville, M.J. 2006. Virulence of Leishmania major in macrophages and mice requires the gluconeogenic enzyme fructose-1,6-bisphosphatase. Proc. Natl. Acad. Sci. U.S.A. 103: 5502-5507.

Nowicki, M.W., Kuaprasert, B., McNae, I.W., Morgan, H.P., Harding, M.M., Michels, P.A.M., Fothergill-Gilmore, L.A. & Walkinshaw, M.D. 2009. Crystal structures of Leishmania mexicana phosphoglycerate mutase suggest a one-metal mechanism and a new enzyme subclass. J. Mol. Biol. 394: 535-543.

Nukui, M., Mello, L.V., Littlejohn, J.E., Setlow, B., Setlow, P., Kim, K., Leighton, T. & Jedrzejas, M.J. 2007. Structure and molecular mechanism of Bacillus anthracis cofactor-independent phosphoglycerate mutase: A crucial enzyme for spores and growing cells of Bacillus species. Biophys. J. 92: 977-988.

O'Boyle, N.M., Banck, M., James, C.A., Morley, C., Vandermeersch, T. & Hutchison, G.R. 2011. Open Babel: An open chemical toolbox. J. Cheminform. 3: 33.

Roychowdhury, A., Kundu, A., Rose, M., Gujar, A., Mukherjee, S. & Das, A.K. 2015. Complete catalytic cycle of cofactor-independent phosphoglycerate mutase involves a spring-loaded mechanism. FEBS J. 282: 1097-1110.

Sauton, N., Lagorce, D., Villoutreix, B.O. & Miteva, M.A. 2008. MS-DOCK: Accurate multiple conformation generator and  rigid docking protocol for multi-step virual ligand screening. BMC Bioinformatics 9: 184-196.

Shave, S., Blackburn, E.A., Adie, J., Houston, D.R., Auer, M., Webster, S.P., Taylor, P. & Walkinshaw, M.D. 2015. UFSRAT: Ultra-fast shape recognitions with atom types – the discovery of novel bioactive small molecular scaffolds for FKBP12 and 11bHSD1. PLoS ONE 10(2): e0116570.

Taylor, P., Blackburn, E., Sheng, Y.G., Harding, S., Hsin, K-Y., Kan, D., Shave, S. & Walkinshaw, M.D. 2008. Ligand discovery and virtual screening using the program LIDAEUS. British J. Pharm. 153: S55-S67.

Trott, O. & Olson, A.J. 2010. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 31: 455-461.

Verlinde, C.L.M.J., Hannaert, V., Blonski, C., Willson, M., Périé, J.J., Fothergill-Gilmore, L.A., Opperdoes, F.R., Gelb, M.H., Hol, W.G.J. & Michels, P.A.M. 2001. Glycolysis as a target for the design of new anti-trypanosome drugs. Drug Resist. Updat. 4: 50-65.

Wang, R., Lai, L. & Wang, S. 2002. Further development and validation of empirical scoring functions for structure-based binding affinity prediction. J. Comput. Aided Mol. Des. 16: 11-26.

Wang, R. & Wang, S. 2001. How does consensus scoring work for virtual library screening? An idealized computer experiment. J. Chem. Inf. Comput. Sci. 41: 1422-1426.

WHO-NTD report. 2015. http://www.who.int/neglected_ diseases/9789241564861/en/.

 

 

*Corresponding author; email: fazia_adyani@iium.edu.my

 

 

previous