Sains Malaysiana 45(7)(2016): 1149–1154

 

Experimental Design using Response Surface Methods for Palm Olein-Based Hydroxy-Ether Systhesis

(Reka Bentuk Eksperimen menggunakan Kaedah Respons Permukaan untuk Sintesis Hidroksi-Eter Minyak Sawit Olein)

 

DARFIZZI DERAWI*

 

School of Chemical Science and Food Technology, Faculty of Science and Technology

Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

Received: 1 October 2015/Accepted: 10 February 2016

 

ABSTRACT

Hydroxy-ether-POo was synthesised via alcoholysis reaction of epoxidized palm olein (EPOo). The experimental design was conducted using response surface methodology (RSM) based on 3 factors; reaction time, reaction temperature and catalyst loading. Responses such as percentage of conversion and percentage of yield were determined using statistical software ‘Design Expert 9’. Hydroxy-ether-POo showed the presence of proton peak attached to the carbon of ether (3.2, 3.5 ppm) and proton of the hydroxyl (4.8 ppm). The presence of carbon peak bonded to hydroxyl was detected at chemical shift 75 ppm and carbonyl carbon of ether at 72 ppm.

 

Keywords: Alcoholysis; oxirane cleavage; palm olein; response surface methods

 

ABSTRAK

Sebatian hidroksi-eter-POo disintesis melalui tindak balas alkoholisis minyak sawit olein terepoksida (EPOo). Reka bentuk eksperimen dirangka menggunakan kaedah respons permukaan (RSM) berdasarkan 3 faktor; masa tindak balas, suhu tindak balas dan peratusan mangkin. Respons peratusan penukaran dan peratus hasil tindak balas ditentukan menggunakan perisian statistik ‘Design Expert 9’. Hidroksi-eter-POo telah menunjukkan kehadiran puncak proton pada karbon eter (3.2, 3.5 ppm) dan proton pada kumpulan hidroksil (4.8 ppm). Puncak karbon hidroksi-eter-POo yang terikat dengan kumpulan hidroksil dikesan pada anjakan kimia 75 ppm dan karbon pada karbonil kumpulan eter pada 72 ppm.

 

Kata kunci: Alkoholisis; kaedah respons permukaan; minyak sawit olein; pembukaan gelang oksirana

 

REFERENCE

 

Biermann, U., Friedt, W., Lang, S., Luhs, W., Machmuller, G., Metzger, J.O., Klaas, M.R., Schafer, H.J. & Schneider, M.P. 2000. New syntheses with oils and fats as renewable raw materials for the chemical industry. Angew. Chem. Int. Ed. 39: 2206-2224.

Campanella, A., Rustoy, E., Baldessari, A. & Baltanás, M.A. 2010. Lubricants from chemically modified vegetable oils. Biortech. 101: 245-254.

Darfizzi Derawi & Jumat Salimon. 2013. Penghasilan poliol minyak sawit olein secara hidrolisis selanjar dan berkelompok. Sains Malaysiana 42(8): 1121-1129.

Darfizzi Derawi & Jumat Salimon. 2010. Optimization on epoxidation of palm olein by using performic acid. E-Journal of Chemistry 7(4): 1440-1448.

Dinda, S., Patwardhan, A.V., Goud, V.V. & Pradhan, N.C. 2008. Epoxidation of cottonseed oil by aqueous hydrogen peroxide catalysed by liquid inorganic acids. Bioresource Technology 99(2008): 3737-3744.

Erhan, S.Z. & Perez, J.M. 2002. Biobased Industrial Fluids and Lubricants. IL: AOCS Press.

Goud, V.V., Patwardhan, A.V. & Pradhan, N.C. 2006. Studies on the epoxidation of mahua oil (Madhumica indica) by hydrogen peroxide. Bioresource Technology 97: 1365-1371.

Gunstone, F.D. 2004. The Chemistry of Oils and Fats: Sources, Composition, Properties and Uses. UK: Blackwell Publishing Ltd.

Guo, A., Cho, Y. & Petrovic´, Z.S. 2000. Structure and properties of halogenated and nonhalogenated soy-based polyols. J. Polym. Sci. Part A: Polym. Chem. 38: 3900-3910.

Huang, J. & Zhang, L. 2002. Effects of NCO/OH molar ratio on structure and properties of graft-interpenetrating polymer networks from polyurethane and nitrolignin. Polymer 43: 2287-2294.

Hwang, H. & Erhan, S. 2006. Synthetic lubricant basestocks from epoxidized soybean oil and Guerbet alcohols. Indcrop. 23: 311-317.

Hwang, H.S. & Erhan, S.Z. 2001. Modification of epoxidized soybean oil for lubricant formulations with improved oxidative stability and low pour point. J. Am. Oil Chem. Soc. 78: 1179-1184.

Jia, L.K., Gong, L.X., Ji, W.J. & Kan, C.Y. 2011. Synthesis of vegetable oil based polyols with cottonseed oil and sorbitol derived from natural source. Chinese Chemical Letters 22(11): 1289-1292.

Lin, B., Yang, L., Dai, H. & Yi, A. 2008. Kinetic studies on oxirane cleavage of epoxidized soybean oil by methanol and characterization of polyols. J. Am. Oil Chem. Soc. 85: 113-117.

Meyer, P.P., Techaphattana, N., Manundawee, S., Sangkeaw, S., Junlakan, W. & Tongurai, C. 2008. Epoxidation of soybean oil and jatropha oil. Thammasat Int. J. Sc. Tech. 13: 1-5.

Milchert, E. & Smagowicz, A. 2008. Epoxidation of the rapeseed oil with peracetic and performic acid. Czasopismo Techniczne. 2: 283-291.

O' Brien, R.D. 1998. Fats and Oils; Formulating and Processing for Applications. Switzerland: Technomic Publishing AG.

Pavia, D.L., Lampman, G.M. & Kriz, G.S. 2001. Introduction to Spectroscopy. Boston: Thomson Learning, Inc.

Rozman, H.D., Yeo, Y.S. & Tay, G.S. 2003. The mechanical and physical properties of polyurethane composites based on rice husk and polyethylene glycol. Polymer Testing 22: 617-623.

Scrimgeour, C. 2005. Chemistry of Fatty Acids. 6th ed. Scotland: Wiley & Sons Inc.

Velayutham, T.S., Abd Majid, W.H., Ahmad, A.B., Kang, G.Y. & Gan, S.N. 2009. Synthesis and characterization of polyurethane coatings derived from polyols synthesized with glycerol, phthalic anhydride and oleic acid. Porgcoat. 66: 367-371.

Wade, L.G. 2006. Organic Chemistry. 6th ed. New York: Pearson Prentice Hall.

Xia, Y. & Larock, R.C. 2010. Vegetable oil-based polymeric materials: synthesis, properties, and applications. Green Chem. 12: 1893-1909.

 

 

*Corresponding author; email: darfizzi@ukm.edu.my

 

 

previous