Sains Malaysiana 45(7)(2016): 1149–1154
Experimental Design using Response Surface Methods for Palm
Olein-Based Hydroxy-Ether Systhesis
(Reka Bentuk Eksperimen menggunakan Kaedah Respons Permukaan untuk
Sintesis Hidroksi-Eter Minyak Sawit Olein)
DARFIZZI DERAWI*
School
of Chemical Science and Food Technology, Faculty of Science and Technology
Universiti
Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
Received:
1 October 2015/Accepted: 10 February 2016
ABSTRACT
Hydroxy-ether-POo was
synthesised via alcoholysis reaction of epoxidized palm olein (EPOo).
The experimental design was conducted using response surface methodology (RSM)
based on 3 factors; reaction time, reaction temperature and catalyst loading.
Responses such as percentage of conversion and percentage of yield were
determined using statistical software ‘Design Expert 9’. Hydroxy-ether-POo showed
the presence of proton peak attached to the carbon of ether (3.2, 3.5 ppm) and
proton of the hydroxyl (4.8 ppm). The presence of carbon peak bonded to
hydroxyl was detected at chemical shift 75 ppm and carbonyl carbon of ether at
72 ppm.
Keywords: Alcoholysis; oxirane cleavage; palm
olein; response surface methods
ABSTRAK
Sebatian hidroksi-eter-POo disintesis
melalui tindak balas alkoholisis minyak sawit olein terepoksida (EPOo). Reka bentuk eksperimen
dirangka menggunakan kaedah respons permukaan (RSM)
berdasarkan 3 faktor; masa tindak balas, suhu tindak balas dan peratusan
mangkin. Respons peratusan penukaran dan peratus hasil
tindak balas ditentukan menggunakan perisian statistik ‘Design Expert 9’. Hidroksi-eter-POo telah menunjukkan kehadiran
puncak proton pada karbon eter (3.2, 3.5 ppm) dan proton pada kumpulan
hidroksil (4.8 ppm). Puncak karbon hidroksi-eter-POo yang
terikat dengan kumpulan hidroksil dikesan pada anjakan kimia 75
ppm dan karbon pada karbonil kumpulan eter pada 72 ppm.
Kata kunci: Alkoholisis; kaedah respons
permukaan; minyak sawit olein; pembukaan gelang oksirana
REFERENCE
Biermann,
U., Friedt, W., Lang, S., Luhs, W., Machmuller, G., Metzger, J.O., Klaas, M.R.,
Schafer, H.J. & Schneider, M.P. 2000. New syntheses with
oils and fats as renewable raw materials for the chemical industry. Angew.
Chem. Int. Ed. 39: 2206-2224.
Campanella, A., Rustoy, E., Baldessari, A. & Baltanás,
M.A. 2010. Lubricants from chemically modified vegetable oils. Biortech.
101: 245-254.
Darfizzi Derawi & Jumat Salimon. 2013. Penghasilan poliol minyak sawit olein secara hidrolisis selanjar dan
berkelompok. Sains Malaysiana 42(8): 1121-1129.
Darfizzi Derawi & Jumat Salimon. 2010. Optimization on epoxidation of palm olein by using performic acid. E-Journal
of Chemistry 7(4): 1440-1448.
Dinda, S., Patwardhan, A.V., Goud, V.V. & Pradhan, N.C.
2008. Epoxidation of cottonseed oil by aqueous
hydrogen peroxide catalysed by liquid inorganic acids. Bioresource
Technology 99(2008): 3737-3744.
Erhan,
S.Z. & Perez, J.M. 2002. Biobased Industrial Fluids and Lubricants.
IL: AOCS Press.
Goud,
V.V., Patwardhan, A.V. & Pradhan, N.C. 2006. Studies on
the epoxidation of mahua oil (Madhumica indica) by hydrogen peroxide. Bioresource Technology 97: 1365-1371.
Gunstone,
F.D. 2004. The Chemistry of Oils and Fats: Sources, Composition, Properties
and Uses. UK: Blackwell Publishing Ltd.
Guo, A., Cho, Y. & Petrovic´, Z.S. 2000. Structure and properties of halogenated and nonhalogenated
soy-based polyols. J. Polym. Sci. Part A: Polym. Chem. 38: 3900-3910.
Huang,
J. & Zhang, L. 2002. Effects of NCO/OH molar ratio on structure and
properties of graft-interpenetrating polymer networks from polyurethane and
nitrolignin. Polymer 43: 2287-2294.
Hwang,
H. & Erhan, S. 2006. Synthetic lubricant basestocks from
epoxidized soybean oil and Guerbet alcohols. Indcrop. 23:
311-317.
Hwang,
H.S. & Erhan, S.Z. 2001. Modification of epoxidized soybean oil for
lubricant formulations with improved oxidative stability and low pour point. J.
Am. Oil Chem. Soc. 78: 1179-1184.
Jia,
L.K., Gong, L.X., Ji, W.J. & Kan, C.Y. 2011. Synthesis of vegetable oil
based polyols with cottonseed oil and sorbitol derived from natural source. Chinese
Chemical Letters 22(11): 1289-1292.
Lin, B., Yang, L., Dai, H. & Yi, A. 2008. Kinetic studies on oxirane cleavage of epoxidized soybean oil by methanol and
characterization of polyols. J. Am. Oil Chem. Soc. 85: 113-117.
Meyer, P.P., Techaphattana, N., Manundawee, S., Sangkeaw,
S., Junlakan, W. & Tongurai, C. 2008. Epoxidation
of soybean oil and jatropha oil. Thammasat Int. J. Sc. Tech. 13:
1-5.
Milchert,
E. & Smagowicz, A. 2008. Epoxidation of the rapeseed oil
with peracetic and performic acid. Czasopismo Techniczne. 2:
283-291.
O'
Brien, R.D. 1998. Fats and Oils; Formulating and Processing for
Applications. Switzerland: Technomic Publishing AG.
Pavia, D.L., Lampman, G.M. & Kriz, G.S. 2001. Introduction to Spectroscopy. Boston: Thomson
Learning, Inc.
Rozman,
H.D., Yeo, Y.S. & Tay, G.S. 2003. The mechanical and physical properties of
polyurethane composites based on rice husk and polyethylene glycol. Polymer
Testing 22: 617-623.
Scrimgeour,
C. 2005. Chemistry of Fatty Acids. 6th ed.
Scotland: Wiley & Sons Inc.
Velayutham,
T.S., Abd Majid, W.H., Ahmad, A.B., Kang, G.Y. & Gan, S.N. 2009. Synthesis
and characterization of polyurethane coatings derived from polyols synthesized
with glycerol, phthalic anhydride and oleic acid. Porgcoat. 66: 367-371.
Wade,
L.G. 2006. Organic Chemistry. 6th ed. New York:
Pearson Prentice Hall.
Xia,
Y. & Larock, R.C. 2010. Vegetable oil-based polymeric materials: synthesis,
properties, and applications. Green Chem. 12: 1893-1909.
*Corresponding
author; email: darfizzi@ukm.edu.my |