Sains Malaysiana 45(7)(2016): 1155–1167
Lead Adsorption
Behaviours on Nanoscale Zero Valent Irons (nZVI)
Coupled with Rice Husk MCM-41
(Kelakuan
Penjerapan Plumbum ke atas Besi Bervalensi Sifar pada Skala Nano (nZVI) Berganding dengan Sekam Padi MCM-41)
C. KAEWBUDDEE1,2,3, P. CHANPIWAT4, P. KIDKHUNTHOD5 & K. WANTALA1,2,3*
1Department of
Chemical Engineering, Faculty of Engineering, Khon Kaen University
Khon Kaen 40002, Thailand
2Chemical Kinetics and
Applied Catalysis Laboratory (CKCL), Faculty of Engineering,
Khon Kaen University, Khon Kaen 40002, Thailand
3Research Center for
Environmental and Hazardous Substance Management (EHSM)
Faculty of Engineering, Khon Kaen
University, Khon Kaen 40002, Thailand
4Environmental
Research Institute, Chulalongkorn University, Bangkok 10330, Thailand
5Synchrotron Light
Research Institute, Nakhon Ratchasima, 30000, Thailand
Received: 02 November 2015/Accessed: 23 January 2016
ABSTRACT
The aims of this work were to investigate the characteristics of
nanoscale zero valent irons (nZVI) coupled with mesoporous
materials (RH-MCM-41) adsorbent and to study the removal mechanisms
of Pb (II) from synthetical solutions using full pictorial design batch
experiments. Synthetic nZVI coupled with RH MCM-41
as Pb (II) adsorbent were characterized by XRD, TEM, BET and XANES. The results of XANES analyses
confirmed the ability of RH-MCM-41 to prevent oxidations of Fe0 to
Fe2+ and Fe3+. XANES results also verified the oxidation states of Pb (II). The
solution pH was the most significant positive effect in controlling Pb (II)
adsorption. The equilibrium and kinetic adsorption isotherms well fitted with
the Langmuir isotherm. The pseudo-second order kinetic adsorption indicated
that the adsorption process is the rate limiting step for Pb (II) removal.
Furthermore, Langmuir-Hinshelwood confirmed the obvious Pb (II) adsorption at
the active site of adsorbents. The reduction rate constant (kr =
5,000 mg/L.min) was higher than the adsorption rate constant (Kad =
0.0002 L/mg). Regarding the research results, four pathways including:
reduction process, adsorption on FeOOH, adsorption on RH-MCM-41
and complex reaction between Fe and Pb ions were suggested for Pb (II) removal
by nZVI coupled with RH-MCM-41.
Keywords: Adsorption mechanism; mesoporous material; nanoscale
zero valent irons; Pb; XANES
ABSTRAK
Penyelidikan ini bertujuan untuk mengkaji ciri besi bervalensi
sifar pada skala nano (nZVI) berganding dengan penjerap bahan
mesoporous (RH-MCM-41) dan mengkaji mekanisme penyingkiran Pb (II)
daripada larutan sistetik menggunakan uji kaji reka bentuk kelompok gambar
penuh. Gabungan penjerap sintetik nZVI dengan RH MCM-41
sebagai Pb (II) telah dicirikan oleh XRD, TEM, BET dan XANES.
Keputusan analisis XANES mengesahkan keupayaan RH-MCM-41
untuk mengelakkan pengoksidaan Fe0 kepada
Fe2+ dan Fe3+.
Keputusan XANES ini juga mengesahkan keadaan pengoksidaan Pb (II).
Larutan PH adalah kesan positif yang paling penting dalam mengawal penjerapan
Pb (II). Penjerapan isoterma keseimbangan dan kinetik juga sepadan dengan
isoterma Langmuir. Penjerapan kinetik tertib pseudo-kedua menunjukkan bahawa
proses penjerapan adalah langkah untuk mengehadkan kadar penyingkiran Pb (II).
Tambahan pula, Langmuir-Hinshelwood mengesahkan penjerapan pasti Pb (II) di
tapak bahan penjerap aktif. Kadar pengurangan berterusan (kr =
5000 mg/L.min) adalah lebih tinggi daripada kadar penjerapan pemalar (Kad =
0.0002 L/mg). Mengenai hasil penyelidikan, empat laluan termasuk: proses
pengurangan, penjerapan pada FeOOH, penjerapan pada RH-MCM-41
dan tindak balas kompleks antara ion Fe dan Pb dicadangkan untuk penyingkiran
Pb (II) oleh nZVI berganding dengan RH-MCM-41.
Kata kunci: Bahan mesoporos;
besi bervalensi sifar pada skala nano; mekanisme penjerapan; Pb;
XANES
REFERENCES
Ahn, S.C., Oh, S.Y. & Cha, D.K. 2008. Enhanced reduction
of nitrate by zero-valent iron at elevated temperatures. Journal of
Hazardous Materials 156(1-3): 17-22.
Artkla, S., Kim, W., Choi, W. & Wittayakun, J. 2009.
Highly enhanced photocatalytic degradation of tetramethylammonium on the hybrid
catalyst of titania and MCM-41 obtained from rice husk silica. Applied
Catalysis B: Environmental 91(1- 2): 157-164.
ATSDR 2007. Toxicological Profile: Lead. http://www.atsdr.
cdc.gov/toxprofiles/tp.asp?id=96&tid=22. Accessed on 7 July 2015.
Babel, S. & Kurniawan, T.A. 2003. Low-cost adsorbents
for heavy metals uptake from contaminated water: A review. Journal of
Hazardous Materials 97(1-3): 219-243.
Bhatnagar, A., Vilar, V.J.P., Botelho, C.M.S. &
Boaventura, R.A.R. 2011. A review of the use of red mud as adsorbent for the
removal of toxic pollutants from water and wastewater. Environmental
Technology 32(3): 231-249.
Boparai, H.K., Joseph, M. & O’Carroll, D.M. 2013.
Cadmium (Cd2+) removal by nano zerovalent iron: surface analysis,
effects of solution chemistry and surface complexation modeling. Environmental
Science and Pollution Research 20(9): 6210-6221.
Case Studies in Environmental Medicine (CSEM): Lead
toxicity. 2010. U.S. Department of Human Services, Public Health Service,
Agency for Toxic Substance and Disease Registry (ATSDR).
Cechinel, M.A.P., Ulson de Souza, S.M.A.G. & Ulson de
Souza, A.A. 2014. Study of lead (II) adsorption onto activated carbon
originating from cow bone. Journal of Cleaner Production 65: 342-349.
Centers for Disease Control and Prevention. 2005. Preventing
lead poisoning in young children. Atlanta: the Centers for Disease Control and
Prevention.
Chand, P. & Pakade, Y.B. 2013. Removal of Pb from water
by adsorption on apple pomace: equilibrium, kinetics, and thermodynamics
studies. Journal of Chemistry 2013: e164575.
Dada, A.O., Olalekan, A.P., Olatunya, A.M. & DADA, O.
2012. Langmuir, Freundlich, Temkin and Dubinin-Radushkevich isotherms studies
of equilibrium sorption of Zn2+ unto phosphoric acid
modified rice husk. IOSR Journal of Applied Chemistry 3(1): 38-45.
Feng, N. & Guo, X. 2012. Characterization of adsorptive
capacity and mechanisms on adsorption of copper, lead and zinc by modified
orange peel. Transactions of Nonferrous Metals Society of China 22(5):
1224-1231.
Feng, Q., Lin, Q., Gong, F., Sugita, S. & Shoya, M.
2004. Adsorption of lead and mercury by rice husk ash. Journal of Colloid
and Interface Science 278(1): 1-8.
Hwang, Y.H., Kim, D.G. & Shin, H.S. 2011. Mechanism
study of nitrate reduction by nano zero valent iron. Journal of Hazardous
Materials 185(2-3): 1513-1521.
Jiang, M., Jin, X., Lu, X.Q. & Chen, Z. 2010. Adsorption
of Pb(II), Cd(II), Ni(II) and Cu(II) onto natural kaolinite clay. Desalination 252(1-3): 33-39.
Kim, S.A., Kamala-Kannan, S., Lee, K.J., Park, Y.J., Shea,
P.J. & Lee, W.H. 2013. Removal of Pb(II) from aqueous solution by a
zeolite–nanoscale zero-valent iron composite. Chemical Engineering
Journal 217: 54-60.
Krasae, N., Wantala, K., Tantriratna, P. & Grisdanurak,
N. 2014. Removal of nitrate by bimetallic copper-nanoscale zero-valent iron. Applied
Environmental Research 36(2): 15-23.
Kržišnik, N., Mladenovič, A., Škapin,
A.S., Škrlep, L., Ščančar, J. & Milačič, R.
2014. Nanoscale zero-valent iron for the removal of Zn2+,
Zn(II)–EDTA and Zn(II)–citrate from aqueous solutions. Science
of the Total Environment 476- 477: 20-28.
Kumar, K.V., Porkodi, K. & Rocha, F. 2008.
Langmuir– Hinshelwood kinetics - A theoretical study. Catalysis
Communications 9(1): 82-84.
Liang, W., Dai, C., Zhou, X. & Zhang, Y. 2014.
Application of zero-valent iron nanoparticles for the removal of aqueous zinc
ions under various experimental conditions. PLoS ONE 9(1): e85686.
Li, X. & Zhang, W. 2007. Sequestration of metal cations
with zerovalent iron nanoparticles - a study with high resolution x-ray
photoelectron spectroscopy (HR-XPS). The Journal of Physical Chemistry C 111(19):
6939-6946.
Lu, Y., He, J. & Luo, G. 2013. An improved synthesis of
chitosan bead for Pb(II) adsorption. Chemical Engineering Journal 226:
271-278.
Melo, R.A.A., Giotto, M.V., Rocha, J. &
Urquieta-González, E.A. 1999. MCM-41 ordered mesoporous molecular sieves
synthesis and characterization. Materials Research 2(3): 173-179.
Naiya, T.K., Bhattacharya, A.K., Mandal, S. & Das, S.K.
2009. The sorption of lead(II) ions on rice husk ash. Journal of Hazardous
Materials 163(2-3): 1254-1264.
Notification of Ministry of Industry Thailand, No 12, B.E.
2542. 1999. Royal Government Gazette. 112 Part 29D (under the Groundwater Act,
B.E. 2520 (1977)).
Occupational Knowledge International. 2010, 2012. Summary of
mass lead poisoning incidents. Occupational Knowledge International (OK
International).
Oh, Y.J., Song, H., Shin, W.S., Choi, S.J. & Kim, Y.H.
2007. Effect of amorphous silica and silica sand on removal of chromium(VI) by
zero-valent iron. Chemosphere 66(5): 858-865.
Onweremadu, E.U. 2008. Physico-chemical characterization of
a farmland affected by wastewater in relation to heavy metals. Journal of
Zhejiang University SCIENCE A 9(3): 366-372.
Pojananukij, N., Wantala, K., Neramittapapong, S. &
Neramittapapong, A. 2016. Equilibrium, kinetics, and mechanism of lead
adsorption using zero-valent iron coated on diatomite. Desalination and
Water Treatment 57(39): 18475-18489.
Ponder, S.M., Darab, J.G. & Mallouk, T.E. 2000.
Remediation of Cr(VI) and Pb(II) aqueous solutions using supported, nanoscale
zero-valent iron. Environmental Science & Technology 34(12): 2564-2569.
Şengil, İ.
A. & Özacar, M. 2009. Competitive biosorption of Pb2+,
Cu2+ and Zn2+ ions from aqueous solutions onto valonia
tannin resin. Journal of Hazardous Materials 166(2-3): 1488-1494.
Sonmezay, A., Öncel, M.S. & Bektas, N. 2012. Adsorption
of lead and cadmium ions from aqueous solutions using manganoxide minerals. Transactions
of Nonferrous Metals Society of China 22(12): 3131-3139.
Sun, C.J., Sun, L.Z. & Sun, X.X. 2013. Graphical
evaluation of the favorability of adsorption processes by using conditional
Langmuir constant. Industrial & Engineering Chemistry Research 52(39):
14251-14260.
Sun, Y.P., Li, X., Cao, J., Zhang, W. & Wang, H.P. 2006.
Characterization of zero-valent iron nanoparticles. Advances in Colloid and
Interface Science 120(1-3): 47-56.
Suwannaruang, T., Rivera, K.K.P., Neramittagapong, A. &
Wantala, K. 2015. Effects of hydrothermal temperature and time on uncalcined
TiO2 synthesis for reactive red 120 photocatalytic degradation. Surface and
Coatings Technology 271: 192-200.
Tanboonchuy, V., Hsu, J.C., Grisdanurak, N. & Liao, C.H.
2011. Gas-bubbled nano zero-valent iron process for high concentration arsenate
removal. Journal of Hazardous Materials 186(2-3): 2123-2128.
Wan, M.W., Kan, C.C., Rogel, B.D. & Dalida, M.L.P. 2010.
Adsorption of copper (II) and lead (II) ions from aqueous solution on
chitosan-coated sand. Carbohydrate Polymers 80(3): 891-899.
Wantala, K., Khamjumphol, C., Thananukool, N. &
Neramittagapong, A. 2015. Degradation of reactive Red 3 by heterogeneous
Fenton-like process over iron-containing RH-MCM-41 assisted by UV irradiation. Desalination
and Water Treatment 54(3): 699-706.
Wantala, K., Sthiannopkao, S., Srinameb, B., Grisdanurak,
N., Kim, K.W. & Han, S. 2012a. Arsenic adsorption by Fe loaded on RH-MCM-41
synthesized from rice husk silica. Journal of Environmental Engineering 138(1):
119-128.
Wantala, K., Khongkasem, E., Khlongkarnpanich, N., Sthiannopkao,
S. & Kim, K.W. 2012b. Optimization of As(V) adsorption on
Fe-RH-MCM-41-immobilized GAC using Box-Behnken design: Effects of pH, loadings,
and initial concentrations. Applied Geochemistry 27(5): 1027-1034.
Wantala, K., Sthiannopkao, S., Srinameb, B., Grisdanurak, N.
& Kim, K.W. 2010. Synthesis and characterization of Fe- MCM-41 from rice
husk silica by hydrothermal technique for arsenate adsorption. Environmental
Geochemistry and Health 32(4): 261-266.
WHO|WHO Guidelines for drinking-water quality. 2011. WHO.
http://www.who.int/water_sanitation_health/dwq/guidelines/ en/. Accessed on 7
July 2015.
Xu, P., Zeng, G.M., Huang, D.L., Lai, C., Zhao, M.H., Wei,
Z., Li, N.J., Huang, C. & Xie, G.X. 2012. Adsorption of Pb(II) by iron
oxide nanoparticles immobilized Phanerochaete chrysosporium: equilibrium,
kinetic, thermodynamic and mechanisms analysis. Chemical Engineering Journal 203: 423-431.
Yan, W., Herzing, A.A., Kiely, C.J. & Zhang, W. 2010.
Nanoscale zero-valent iron (nZVI): aspects of the core-shell structure and
reactions with inorganic species in water. Journal of Contaminant Hydrology 118(3-4):
96-104.
Zhang, W. 2003. Nanoscale iron particles for environmental
remediation: an overview. Journal of Nanoparticle Research 5(3-4):
323-332.
Zhang, X., Lin, S., Chen, Z., Megharaj, M. & Naidu, R.
2011. Kaolinite-supported nanoscale zero-valent iron for removal of Pb2+ from
aqueous solution: Reactivity, characterization and mechanism. Water Research 45(11): 3481-3488.
Zhang, X., Lin, S., Lu, X.Q. & Chen, Z. 2010. Removal of
Pb(II) from water using synthesized kaolin supported nanoscale zero-valent
iron. Chemical Engineering Journal 163(3): 243-248.
Zhang, Y., Li, Y., Dai, C., Zhou, X. & Zhang, W. 2014.
Sequestration of Cd(II) with nanoscale zero-valent iron (nZVI):
Characterization and test in a two-stage system. Chemical Engineering
Journal 244: 218-226.
Zhang, Y., Su, Y., Zhou, X., Dai, C. & Keller, A.A.
2013. A new insight on the core-shell structure of zerovalent iron
nanoparticles and its application for Pb(II) sequestration. Journal of
Hazardous Materials 263(Part 2): 685-693.
*Corresponding
author; email: kitirote@kku.ac.th
|