Sains Malaysiana 45(7)(2016): 1177–1181
On
P-Convergence of Four Dimensional Weighted Sums of Double Random Variables
(Hasil
Tambah Berpemberat Empat Dimensi Berganda Pemboleh Ubah Rawak ke atas
Penumpuan-P)
RICHARD F. PATTERSON1 & EKREM SAVAS2*
1Department of Mathematics
and Statistics, University of North Florida Jacksonville
Florida, 32224, USA
2Department of Mathematics, Istanbul
Ticaret University, Sutluce-Istanbul, Turkey
Received: 6 October 2015/Accepted: 19 December
2015
ABSTRACT
The goal of this paper was to present a series of limit theorems
that characterizes independent double random variables via four
dimensional summability transformation. In order to accomplish this goal
we began with the presentation of the following theorem that characterize
pairwise independent random variables: let [xk,l] be
a double sequence of pairwise independent random variables such that [xk, l] was uniformly integrable. Let [am, n, k, l] be a four dimensional matrix such that ≤ C for all ordered pair (m,
n) and for some C and converges to 0 in probability. Then (xk,l– E(xk,l) converges in mean to 0. Other extensions and variations via
multidimensional transformation shall also be presented.
Keywords: Double sequences Pringsheim limit point; P-convergent; RH-Regular
ABSTRAK
Penyelidikan ini bertujuan untuk membentangkan satu siri teorem
had yang mencirikan pemboleh ubah rawak bebas berganda melalui
keterhasiltambahan transformasi empat dimensi. Untuk mencapai matlamat ini,
kami mulakan dengan memberikan teorem yang mencirikan pasangan demi pasangan
pemboleh ubah rawak: biar [xk,l] menjadi jujukan ganda dua pasangan
demi pasangan pemboleh ubah rawak bebas supaya [xk, l] menjadi seragam terkamir. Biar [am, n, k, l] menjadi empat dimensi matriks supaya ≤ C untuk semua pasangan yang disusun (m, n) dan bagi sesetengah
C dan penumpuan dalam kebarangkalian kepada 0. Kemudian (xk,l– E(xk,l) menumpu pada min untuk 0. Perluasan lain dan
variasi melalui transformasi bermultimatra turut dikemukakan.
Kata kunci: Jujukan ganda dua titik had
Pringsheim; penumpuan P; RH biasa
REFERENCES
Hamilton, H.J. 1936. Transformations of Multiple
Sequences. Duke Math. Jour. 2: 29-60.
Patterson, R.F. 2000. Analogues of some
fundamental theorems of summability theory, Internat. J. Math.
& Math. Sci. 23(1): 1-9.
Patterson, R.F. & Savas, E. 2013. On double sequences of
continuous functions having continuous P-limits. Publ. Math. Debrecen 82(1):
43-58.
Patterson, R.F. & Savas, E. 2012a. Multidimensional matrix characterization of
equivalent double sequences. Studia Sci. Math. Hungar. 49(2):
269-281.
Patterson, R.F. & Savas, E. 2012b. Rate of P-convergence over equivalence classes of double sequence
spaces. Positivity 16(4): 739-749.
Patterson, R.F. & Savas, E. 2012c. RH-conservative matrix characterization of
P-convergence in probability. Comput. Math. Appl. 63(6):
1020-1025.
Patterson, R.F. & Savas, E. 2011. Matrix summability of
statistically P-convergence sequences. Filomat 25(4): 55-62.
Patterson, R.F. & Savas, E. 2010a. Consistent classes of double summability methods. Appl. Math.
Lett. 23(8): 831-835.
Patterson, R.F. & Savas, E. 2010b. P-asymptotically equivalent in probability. Sarajevo J. Math. 6(19): 217-228.
Patterson, R.F. & Savas, E. 2008. Summability
of double independent random variables. J. Inequal. Appl. 2008:
Article ID 948195.
Pringsheim, A. 1900. Zur theorie der zweifach unendlichen
zahlenfolgen. Mathematische Annalen 53: 289-321.
Pruitt, W.E. 1966. Summability of independent random
variables. Intern. J. Math. & Math. Sci. 15(5): 769-776.
Robison, G.M. 1926. Divergent double sequences
and series. Amer. Math. Soc. Trans. 2: 50-73.
Wang, X.C. & Rao, M.B. 1985. A note on
convergence of weighted sums of random variables. Internat. J Math.
& Math. Sci. 8(4): 805-812.
*Corresponding author; email: ekremsavas@yahoo.com
|