Sains Malaysiana 45(8)(2016): 1183–1190
Phytotoxicity
Assessment of nano-ZnO on Groundnut (Arachis hypogaea) Seed Germination
in MS Medium
(Penilaian
Kefitotoksikan nano-ZnO ke atas Percambahan Biji Benih Kacang Tanah
(Arachis hypogaea) dalam Medium MS)
EHSAN BORZOUYAN DASTJERDI*, ISMAIL
BIN SAHID & KHAIRIAH BINTI JUSOH
School of Environmental and Natural
Resource Sciences, Faculty of Science and Technology
Universiti Kebangsaan Malaysia, 43600
Bangi, Selangor Darul Ehsan, Malaysia
Received: 20 April 2015/Accepted: 26
January 2016
ABSTRACT
Due to the increasing production and use of nanoparticles in
various sectors such as electronic industries and healthcare, concerns about
the unknown effects caused by the presence of these materials in the natural
environment and agricultural systems were on the rise. Because of the growing
trend of ZnO nanoparticles (nZnO) which is one of the most widely used
nanoparticles being released into the environment, it has attracted the
attention for more studies to be done on the effects of this nanoparticle on
organisms. This study was carried out to investigate the phytotoxicity effect
of nZnO on groundnut seedlings in Murashige and Skoog (MS)
medium. The experimental treatments of this study include eight concentrations
of nZnO (10, 30, 50, 100, 200, 400, 1000 & 2000 mg.L-1)
added to MS medium and MS medium without nanoparticles
have been used as control treatment. For the first 6 days after sowing,
germination percent and germination rate index were calculated by counting the
germinated seeds every day. Groundnut seedlings were incubated for 3 weeks in
optimum condition and after that, seedling characteristics such as length, wet
and dry weight of radicle and plumule were measured. The water content of
radicle and plumule were also calculated. The results of this study showed that
radicle and plumule length of groundnut seedlings were affected by nZnO
exposure, in a way that length of radicles in 50 mg.L-1 nZnO
and higher concentrations was significantly lower than that of control
treatment and the shortest plumule length was observed in 2000 mg.L-1 nZnO
concentration treatment. Both the radicle and plumule wet weight were also
decreased as the nanoparticle concentration was increased. However, despite the
decreasing in radicle and plumule dry weight with increasing in nZnO
concentration, this increase was not significant. However radicle dry weight in
10 mg.L-1 nZnO was significantly higher than nZnO treatments
with 200 mg.L-1 concentration and higher concentrations. Moreover,
observations of this study did not show any significant difference between the
water content of nZnO concentration treatments and control treatment.
Keywords: Nanoparticle exposure; plumule length;
radicle length
ABSTRAK
Peningkatan dalam pengeluaran dan penggunaan zarah
nano pada pelbagai sektor seperti industri elektronik dan penjagaan
kesihatan telah menyebabkan kebimbangan mengenai kesan yang tidak
diketahui oleh kehadiran bahan dalam alam semula jadi dan sistem
pertanian semakin meningkat. Peningkatan trend zarah nano
ZnO (nZnO) yang paling kerap digunakan telah dibebaskan ke dalam
persekitaran dan menarik perhatian supaya lebih banyak kajian dijalankan
tentang kesan nanopartikel ini ke atas organisma. Kajian
ini telah dijalankan untuk mengkaji kesan kefitotoksikan
nZnO pada benih kacang tanah dalam medium Murashige dan Skoog (MS). Rawatan percubaan
kajian ini menggunakan lapan kepekatan nZnO (10, 30, 50, 100, 200,
400, 1000 & 2000 mg.L-1)
yang ditambah ke medium MS dan medium MS tanpa
nanopartikel sebagai kawalan. Sepanjang 6 hari pertama selepas semaian,
peratus percambahan dan indeks kadar
percambahan menghitung dengan mengira percambahan biji benih setiap
hari. Benih kacang tanah dieram selama 3 minggu
dalam keadaan optimum dan selepas itu ciri-ciri anak benih seperti
panjang, berat basah dan kering radikel dan plumul telah diukur.
Kandungan air radikel dan plumul juga akan
dikira. Keputusan kajian ini menunjukkan panjang radikel dan plumul
anak benih kacang tanah dipengaruhi oleh pendedahan nZnO dengan
panjang radikel 50 mg. L-1 nZnO
dan kepekatan yang lebih tinggi adalah jauh lebih rendah berbanding
rawatan kawalan dan kepanjangan plumul yang paling pendek diperhatikan
pada 2000 mg.L-1 nZnO
rawatan kepekatan. Selain itu, berat basah radikel
dan plumul juga menurun kerana kepekatan nanopartikel ditingkatkan.
Namun begitu, walaupun penurunan berat kering radikel dan plumul
dilihat dengan peningkatan pada kepekatan nZnO, peningkatan ini
tidak bererti. Oleh itu, berat radikel kering dalam 10 mg.L-1 nZnO
adalah jauh lebih tinggi daripada rawatan nZnO dengan kepekatan
200 mg.L-1 dan
lebih. Selain itu, pemerhatian daripada kajian ini tidak menunjukkan
sebarang perbezaan yang ketara antara kandungan air rawatan kepekatan
nZnO dan kawalan rawatan.
Kata kunci: Panjang plumul; panjang radikel; pendedahan
nanopartikel
REFERENCES
Biener, J., Farfan-Arribas,
E., Biener, M., Friend, C.M. & Madix, R.J. 2005. Synthesis of TiO2 nanoparticles on the Au (111) surface. Journal of Chemical Physics 123(9):
094705.
Boonyanitipong, P.,
Kositsup, B., Kumar, P., Baruah, S. & Dutta, J. 2011. Toxicity of Zno and Tio2 nanoparticles on germinating rice seed. International Journal of
Bioscience, Biochemistry and Bioinformatics 1: 282-285.
Deb, N. 2012. Plant Nutrient Coated Nanoparticles and
Methods for Their Preparation and Use. Google Patents.
Dhoke, S.K., Mahajan, P.,
Kamble, R. & Khanna, A. 2013. Effect of nanoparticles suspension on the
growth of mung (Vigna radiata) seedlings by foliar spray method. Nanotechnology
Development 3(1): e1.
Feizi, H., Moghaddam, P.R., Shahtahmassebi, N.
& Fotovat, A. 2012. Impact of bulk and nanosized titanium
dioxide (TiO2) on wheat seed germination and seedling growth. Biological Trace Element Research 146(1): 101-106.
Gardea-Torresdey, J.L.,
Rico, C.M. & White, J.C. 2014. Trophic transfer, transformation, and impact of
engineered nanomaterials in terrestrial environments. Environmental
Science & Technology 48(5): 2526-2540.
Jha, Z., Behar, N., Sharma,
S.N., Chandel, G., Sharma, D. & Pandey, M. 2011. Nanotechnology: Prospects of agricultural advancement.
Nano Vision 1(2): 88-100.
Karaguzel, O., Cakmakci,
S., Ortacesme, V. & Aydinoglu, B. 2004. Influence of seed coat treatments on
germination and early seedling growth of Lupinus varius L. Pakistan Journal
of Botany 36(1): 65-74.
Khodakovskaya, M.,
Dervishi, E., Mahmood, M., Xu, Y., Li, Z., Watanabe, F. & Biris, A.S. 2009. Carbon nanotubes are able to penetrate plant
seed coat and dramatically affect seed germination and plant growth. ACS
Nano 3(10): 3221-3227.
Klaine, S.J., Alvarez, P.J., Batley, G.E.,
Fernandes, T.F., Handy, R.D., Lyon, D.Y., Mahendra, S., Mclaughlin, M.J. &
Lead, J.R. 2008. Nanomaterials in the environment: Behavior, fate,
bioavailability, and effects. Environmental Toxicology and Chemistry 27(9):
1825-1851.
Lee, C.W., Mahendra, S.,
Zodrow, K., Li, D., Tsai, Y.C., Braam, J. & Alvarez, P.J. 2010. Developmental phytotoxicity
of metal oxide nanoparticles to Arabidopsis thaliana. Environmental
Toxicology and Chemistry 29(3): 669-675.
López-Moreno, M.L., de La Rosa, G., Hernández-Viezcas,
J.Á., Castillo-Michel, H., Botez, C.E., Peralta-Videa, J.R.
& Gardea-Torresdey, J.L. 2010. Evidence
of the differential biotransformation and genotoxicity of Zno and
Ceo2 nanoparticles on soybean (Glycine max)
plants. Environmental Science & Technology 44(19):
7315-7320.
Ma, H., Williams, P.L.
& Diamond, S.A. 2013. Ecotoxicity of manufactured Zno nanoparticles-a review.
Environmental Pollution 172: 76-85.
Ma, X., Geiser-Lee, J.,
Deng, Y. & Kolmakov, A. 2010. Interactions between engineered nanoparticles (Enps) and plants:
phytotoxicity, uptake and accumulation. Science of the Total Environment 408(16):
3053-3061.
Milani, N. 2012. Zinc Oxide Nanoparticles in the Soil Environment:
Dissolution, Speciation, Retention and Bioavailability. PhD
Dissertation. The University of Adelaide.
Mousavi, S.R. & Rezaei, M. 2011. Nanotechnology in agriculture and food production. J.
Appl. Environ. Biol. Sci. 1(10): 414-419.
Murashige, T. & Skoog,
F. 1962. A revised medium for rapid
growth and bio assays with tobacco tissue cultures. Physiologia Plantarum 15(3):
473-497.
Nair, R., Varghese, S.H.,
Nair, B.G., Maekawa, T., Yoshida, Y. & Kumar, D.S. 2010. Nanoparticulate material
delivery to plants. Plant Science 179(3): 154-163.
Prasad, T., Sudhakar, P.,
Sreenivasulu, Y., Latha, P., Munaswamy, V., Reddy, K.R., Sreeprasad, T.,
Sajanlal, P. & Pradeep, T. 2012. Effect of nanoscale zinc oxide particles on the
germination, growth and yield of peanut. Journal of Plant Nutrition 35(6):
905-927.
Sharma, K.K. & Bhatnagar-Mathur, P. 2006. Peanut (Arachis hypogaea L.). In Agrobacterium
Protocols, edited by Wang, K. New Jersey: Humana Press Inc. pp. 347-358.
Soleimanpour, M.R.,
Hosseini, S.J.F., Mirdamadi, S.M. & Sarafrazi, A. 2011. Challenges in
commercialization of nanotechnology in agriculture sector of Iran. Annals of
Biological Research 2(4): 68-75.
Song, U., Jun, H., Waldman, B., Roh, J., Kim, Y., Yi, J.
& Lee, E.J. 2013. Functional analyses of nanoparticle toxicity: a comparative study of the
effects of TiO2 and Ag on tomatoes (Lycopersicon esculentum). Ecotoxicology and Environmental Safety 93: 60-67.
Zheng, L., Hong, F., Lu, S. & Liu,
C. 2005. Effect of Nano-TiO2 on
strength of naturally aged seeds and growth of spinach. Biological
Trace Element Research 104(1): 83-91.
*Corresponding author; email: eborzuyan@yahoo.com
|