Sains Malaysiana 45(8)(2016): 1183–1190

 

Phytotoxicity Assessment of nano-ZnO on Groundnut (Arachis hypogaea) Seed Germination in MS Medium

(Penilaian Kefitotoksikan nano-ZnO ke atas Percambahan Biji Benih Kacang Tanah (Arachis hypogaea) dalam Medium MS)

 

EHSAN BORZOUYAN DASTJERDI*, ISMAIL BIN SAHID & KHAIRIAH BINTI JUSOH

 

School of Environmental and Natural Resource Sciences, Faculty of Science and Technology

Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Darul Ehsan, Malaysia

 

Received: 20 April 2015/Accepted: 26 January 2016

 

 

ABSTRACT

Due to the increasing production and use of nanoparticles in various sectors such as electronic industries and healthcare, concerns about the unknown effects caused by the presence of these materials in the natural environment and agricultural systems were on the rise. Because of the growing trend of ZnO nanoparticles (nZnO) which is one of the most widely used nanoparticles being released into the environment, it has attracted the attention for more studies to be done on the effects of this nanoparticle on organisms. This study was carried out to investigate the phytotoxicity effect of nZnO on groundnut seedlings in Murashige and Skoog (MS) medium. The experimental treatments of this study include eight concentrations of nZnO (10, 30, 50, 100, 200, 400, 1000 & 2000 mg.L-1) added to MS medium and MS medium without nanoparticles have been used as control treatment. For the first 6 days after sowing, germination percent and germination rate index were calculated by counting the germinated seeds every day. Groundnut seedlings were incubated for 3 weeks in optimum condition and after that, seedling characteristics such as length, wet and dry weight of radicle and plumule were measured. The water content of radicle and plumule were also calculated. The results of this study showed that radicle and plumule length of groundnut seedlings were affected by nZnO exposure, in a way that length of radicles in 50 mg.L-1 nZnO and higher concentrations was significantly lower than that of control treatment and the shortest plumule length was observed in 2000 mg.L-1 nZnO concentration treatment. Both the radicle and plumule wet weight were also decreased as the nanoparticle concentration was increased. However, despite the decreasing in radicle and plumule dry weight with increasing in nZnO concentration, this increase was not significant. However radicle dry weight in 10 mg.L-1 nZnO was significantly higher than nZnO treatments with 200 mg.L-1 concentration and higher concentrations. Moreover, observations of this study did not show any significant difference between the water content of nZnO concentration treatments and control treatment.

 

Keywords: Nanoparticle exposure; plumule length; radicle length

 

 

ABSTRAK

Peningkatan dalam pengeluaran dan penggunaan zarah nano pada pelbagai sektor seperti industri elektronik dan penjagaan kesihatan telah menyebabkan kebimbangan mengenai kesan yang tidak diketahui oleh kehadiran bahan dalam alam semula jadi dan sistem pertanian semakin meningkat. Peningkatan trend zarah nano ZnO (nZnO) yang paling kerap digunakan telah dibebaskan ke dalam persekitaran dan menarik perhatian supaya lebih banyak kajian dijalankan tentang kesan nanopartikel ini ke atas organisma. Kajian ini telah dijalankan untuk mengkaji kesan kefitotoksikan nZnO pada benih kacang tanah dalam medium Murashige dan Skoog (MS). Rawatan percubaan kajian ini menggunakan lapan kepekatan nZnO (10, 30, 50, 100, 200, 400, 1000 & 2000 mg.L-1) yang ditambah ke medium MS dan medium MS tanpa nanopartikel sebagai kawalan. Sepanjang 6 hari pertama selepas semaian, peratus percambahan dan indeks kadar percambahan menghitung dengan mengira percambahan biji benih setiap hari. Benih kacang tanah dieram selama 3 minggu dalam keadaan optimum dan selepas itu ciri-ciri anak benih seperti panjang, berat basah dan kering radikel dan plumul telah diukur. Kandungan air radikel dan plumul juga akan dikira. Keputusan kajian ini menunjukkan panjang radikel dan plumul anak benih kacang tanah dipengaruhi oleh pendedahan nZnO dengan panjang radikel 50 mg. L-1 nZnO dan kepekatan yang lebih tinggi adalah jauh lebih rendah berbanding rawatan kawalan dan kepanjangan plumul yang paling pendek diperhatikan pada 2000 mg.L-1 nZnO rawatan kepekatan. Selain itu, berat basah radikel dan plumul juga menurun kerana kepekatan nanopartikel ditingkatkan. Namun begitu, walaupun penurunan berat kering radikel dan plumul dilihat dengan peningkatan pada kepekatan nZnO, peningkatan ini tidak bererti. Oleh itu, berat radikel kering dalam 10 mg.L-1 nZnO adalah jauh lebih tinggi daripada rawatan nZnO dengan kepekatan 200 mg.L-1 dan lebih. Selain itu, pemerhatian daripada kajian ini tidak menunjukkan sebarang perbezaan yang ketara antara kandungan air rawatan kepekatan nZnO dan kawalan rawatan.

 

Kata kunci: Panjang plumul; panjang radikel; pendedahan nanopartikel

REFERENCES

Biener, J., Farfan-Arribas, E., Biener, M., Friend, C.M. & Madix, R.J. 2005. Synthesis of TiO2 nanoparticles on the Au (111) surface. Journal of Chemical Physics 123(9): 094705.

Boonyanitipong, P., Kositsup, B., Kumar, P., Baruah, S. & Dutta, J. 2011. Toxicity of Zno and Tio2 nanoparticles on germinating rice seed. International Journal of Bioscience, Biochemistry and Bioinformatics 1: 282-285.

Deb, N. 2012. Plant Nutrient Coated Nanoparticles and Methods for Their Preparation and Use. Google Patents.

Dhoke, S.K., Mahajan, P., Kamble, R. & Khanna, A. 2013. Effect of nanoparticles suspension on the growth of mung (Vigna radiata) seedlings by foliar spray method. Nanotechnology Development 3(1): e1.

Feizi, H., Moghaddam, P.R., Shahtahmassebi, N. & Fotovat, A. 2012. Impact of bulk and nanosized titanium dioxide (TiO2) on wheat seed germination and seedling growth. Biological Trace Element Research 146(1): 101-106.

Gardea-Torresdey, J.L., Rico, C.M. & White, J.C. 2014. Trophic transfer, transformation, and impact of engineered nanomaterials in terrestrial environments. Environmental Science & Technology 48(5): 2526-2540.

Jha, Z., Behar, N., Sharma, S.N., Chandel, G., Sharma, D. & Pandey, M. 2011. Nanotechnology: Prospects of agricultural advancement. Nano Vision 1(2): 88-100.

Karaguzel, O., Cakmakci, S., Ortacesme, V. & Aydinoglu, B. 2004. Influence of seed coat treatments on germination and early seedling growth of Lupinus varius L. Pakistan Journal of Botany 36(1): 65-74.

Khodakovskaya, M., Dervishi, E., Mahmood, M., Xu, Y., Li, Z., Watanabe, F. & Biris, A.S. 2009. Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth. ACS Nano 3(10): 3221-3227.

Klaine, S.J., Alvarez, P.J., Batley, G.E., Fernandes, T.F., Handy, R.D., Lyon, D.Y., Mahendra, S., Mclaughlin, M.J. & Lead, J.R. 2008. Nanomaterials in the environment: Behavior, fate, bioavailability, and effects. Environmental Toxicology and Chemistry 27(9): 1825-1851.

Lee, C.W., Mahendra, S., Zodrow, K., Li, D., Tsai, Y.C., Braam, J. & Alvarez, P.J. 2010. Developmental phytotoxicity of metal oxide nanoparticles to Arabidopsis thaliana. Environmental Toxicology and Chemistry 29(3): 669-675.

López-Moreno, M.L., de La Rosa, G., Hernández-Viezcas, J.Á., Castillo-Michel, H., Botez, C.E., Peralta-Videa, J.R. & Gardea-Torresdey, J.L. 2010. Evidence of the differential biotransformation and genotoxicity of Zno and Ceo2 nanoparticles on soybean (Glycine max) plants. Environmental Science & Technology 44(19): 7315-7320.

Ma, H., Williams, P.L. & Diamond, S.A. 2013. Ecotoxicity of manufactured Zno nanoparticles-a review. Environmental Pollution 172: 76-85.

Ma, X., Geiser-Lee, J., Deng, Y. & Kolmakov, A. 2010. Interactions between engineered nanoparticles (Enps) and plants: phytotoxicity, uptake and accumulation. Science of the Total Environment 408(16): 3053-3061.

Milani, N. 2012. Zinc Oxide Nanoparticles in the Soil Environment: Dissolution, Speciation, Retention and Bioavailability. PhD Dissertation. The University of Adelaide.

Mousavi, S.R. & Rezaei, M. 2011. Nanotechnology in agriculture and food production. J. Appl. Environ. Biol. Sci. 1(10): 414-419.

Murashige, T. & Skoog, F. 1962. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia Plantarum 15(3): 473-497.

Nair, R., Varghese, S.H., Nair, B.G., Maekawa, T., Yoshida, Y. & Kumar, D.S. 2010. Nanoparticulate material delivery to plants. Plant Science 179(3): 154-163.

Prasad, T., Sudhakar, P., Sreenivasulu, Y., Latha, P., Munaswamy, V., Reddy, K.R., Sreeprasad, T., Sajanlal, P. & Pradeep, T. 2012. Effect of nanoscale zinc oxide particles on the germination, growth and yield of peanut. Journal of Plant Nutrition 35(6): 905-927.

Sharma, K.K. & Bhatnagar-Mathur, P. 2006. Peanut (Arachis hypogaea L.). In Agrobacterium Protocols, edited by Wang, K. New Jersey: Humana Press Inc. pp. 347-358.

Soleimanpour, M.R., Hosseini, S.J.F., Mirdamadi, S.M. & Sarafrazi, A. 2011. Challenges in commercialization of nanotechnology in agriculture sector of Iran. Annals of Biological Research 2(4): 68-75.

Song, U., Jun, H., Waldman, B., Roh, J., Kim, Y., Yi, J. & Lee, E.J. 2013. Functional analyses of nanoparticle toxicity: a comparative study of the effects of TiO2 and Ag on tomatoes (Lycopersicon esculentum). Ecotoxicology and Environmental Safety 93: 60-67.

Zheng, L., Hong, F., Lu, S. & Liu, C. 2005.  Effect of Nano-TiO2 on strength of naturally aged seeds and growth of spinach. Biological Trace Element Research 104(1): 83-91.

 

 

*Corresponding author; email: eborzuyan@yahoo.com