Sains Malaysiana 45(8)(2016): 1201–1206
Synthesis
of Zinc Selenide/Graphene Oxide Composite via Direct and Indirect Hydrothermal
Method
(Sintesis
Komposit Zink Selenida/Grafin Oksida melalui Kaedah Hidroterma Langsung dan
tidak Langsung)
LEE HAN KEE1, JOSEPHINE LIEW YING CHYI1*, ZAINAL ABIDIN TALIB1, MOHAMMAD SHUHAZLLY MAMAT1, JANET LIM HONG NGEE2, FAKHRURRAZI ASHARI1, LEONG YONG JIAN1, CHANG FU DEE3 & BURHANUDDIN YEOP MAJLIS3
1Department of
Physics, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang,
Selangor Darul Ehsan, Malaysia
2Department of
Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang,
Selangor Darul Ehsan, Malaysia
3Institute
Microengineering and Nanoelectronics, Universiti Kebangsaan Malaysia, 43600
Bangi, Selangor Darul Ehsan, Malaysia
Received: 20 April 2015/Accepted: 20 November 2015
ABSTRACT
Zinc selenide/graphene oxide (ZnSe/GO) composite is synthesized
using hydrothermal method. Two different methods such as direct and indirect
route have been investigated to form the ZnSe/GO composite. In this research,
the graphene oxide used was in sheet and liquid form. The synthesized composite
was then characterized using X-ray diffraction (XRD)
for phase identification, field emission scanning electron microscopy (FESEM)
for morphology analysis and ultraviolet-visible spectroscopy (UV-Vis)
for optical properties. ZnSe/GO composite showed absorption peak ranging from
460 to 480 nm with the optical band gap obtained through Tauc equation. The
optical band gap of the ZnSe/GO composite has been tuned down to a smaller
value as compared to the bulk ZnSe compound. The optical band gap has been
reduced to around 2.53 eV when liquid graphene oxide was used while around 2.23
to 2.32 eV when graphene oxide sheet was used. The purity of ZnSe/GO composite
synthesis via indirect hydrothermal method is higher than those synthesized via
direct hydrothermal method. The type of graphene oxide will affect the
morphology of the composite where the ZnSe compound was either wrapped by tiny
thorn-like substance or graphene oxide layer.
Keywords: Band gap tuning; morphology; UV-vis spectroscopy; x-ray
diffraction
ABSTRAK
Komposit zink selenida/grafin oksida (ZnSe/GO) telah dihasilkan menggunakan
kaedah hidroterma. Dua kaedah berlainan iaitu secara langsung dan
tidak langsung telah dikaji untuk menghasilkan komposit ZnSe/GO.
Dalam kajian ini, grafin oksida yang digunakan adalah dalam bentuk
lembaran dan cecair. Komposit yang dihasilkan ini kemudian dicirikan
dengan menggunakan instrumen pembelauan sinar-X (XRD) untuk mengenal pasti fasa sampel,
mikroskopi medan pancaran pengimbasan elektron (FESEM)
untuk analisis morfologi dan spektroskopi ultraungu/boleh nampak
(UV-Vis)
untuk mengenal pasti sifat optiknya. Komposit ZnSe/GO menunjukkan
puncak penyerapan dalam lingkungan 460 hingga 480 nm dengan jurang
jalur optik diperoleh melalui persamaan Tauc. Jurang jalur optik
ZnSe/GO komposit telah dikurangkan ke nilai yang lebih kecil berbanding
dengan kompaun ZnSe. Jurang jalur optik telah dikurangkan ke 2.53
eV apabila cecair grafin oksida digunakan manakala antara 2.23 hingga
2.32 eV apabila lembaran grafin oksida digunakan. Ketulenan sebatian ZnSe/GO yang dihasilkan melalui kaedah hidroterma secara tidak langsung
adalah lebih tinggi berbanding dengan komposit yang dihasilkan melalui
kaedah hidroterma secara langsung. Jenis grafin oksida akan memberi
kesan terhadap morfologi komposit dengan sebatian ZnSe sama ada dibalut oleh bahan duri kecil atau lapisan grafin
oksida.
Kata kunci: Morfologi; pembelauan sinar-X; penalaan jurang jalur;
spektroskopi UV-Vis
REFERENCES
Askeland,
D., Fulay, P. & Wright, W. 2011. The Science and Engineering of
Materials. 6th ed. Stamford: CT.
Bhaskar,
S., Dobal, P.S., Rai, B.K., Katiyar, R.S., Bist, H.D., Ndap, J.O. & Burger,
A. 1999. Photoluminiscence study of deep levels in Cr-doped ZnSe. Journal of
Applied Physics 85(1): 439-443.
Han,
J., Xue, S., Zhou, W., Wu, S., Xie, P. & Zou, R. 2014. Cactus-like and
honeycomb-like Zinc Selenide microspheres on graphene oxide sheets with
excellent optical properties. Journal of Colloid and Interface Science 430:
116-120.
Kumaresan,
R., Ichimura, M. & Arai, E. 2002. Chemial deposition of ZnSe
polycrystalline thin films and their characterization. Thin Solid Films 414:
25-30.
Li,
X.S., Zhu, Y.W., Cai, W.W., Borysiak, M., Han, B.Y., Chen, D., Piner, R.D.,
Colombo, L.G. & Ruoff, R.S. 2009. Transfer of large-area graphene films for
high-performance transparent conductive electrodes. Nano Letters 9(12):
4359-4363.
Liu,
C., Ji, Y. & Tan, T. 2013. One-pot hydrothermal synthesis of
water-dispersible ZnS quantum dots modified with mercaptoacetic acid. Journal
of Alloys and Compounds 570: 23-27.
Lokhande,
C.D., Patil, P.S., Tributsh, H. & Ennaoui, A. 1998. Formation of II-VI
nanocrystals in a novel phosphate glass. Journal of Crystal Growth 184-185:
365-369.
Muller,
M., Brauninger, M. & Trauzettel, B. 2009. Temperature dependence of the
conductivity of ballistic graphene. Physical Review Letters 103:
196801-196805.
Patel,
J.D., Mighri, F. & Ajji, A. 2014. A facile route towards preparation of
ZnSe nanocrystals. Materials Letters 131: 366-369.
Segovia,
M., Lemus, K., Moreno, M., Santa Ana, M.A., Gonzalez, G., Ballesteros, B.,
Sotomayor, C. & Benaventa, E. 2011. Zinc oxide/carboxylic acid lamellar
structures. Materials Research Bulletin 46(11): 2191-2195.
Syuhada,
N.I., Huang, N.M., Vijay Kumar, S., Lim, H.N., Rahman, S.A., Thien, G.S.H.,
Ibrahim, N.A., Ahmad, M. & Moradihamedani, P. 2014. Enhanced mechanical
properties of chitosan/EDTA-GO nanocomposites thin films. Sains Malaysiana 43(6):
851-859.
Wu,
C.X., Li, F.S., Zhang, Y.G. & Guo, T.L. 2012. Improving the field emission
of graphene by depositing zinc oxide nanorods on its surface. Carbon 50:
3622-3626.
Zhu,
J., Koltypin, Y. & Gedankem, A. 2000. General sonochemical method for the
preparation of nanophasic selenides: Synthesis of ZnSe nanoparticles. Chemistry
of Materials 12(1): 73-78.
*Corresponding
author; email: josephine@upm.edu.my |