Sains Malaysiana 45(8)(2016): 1213–1219
The
Effect of Al(NO3)3 Concentration
on the Formation of AuNPs using Low Temperature Hydrothermal Reaction for
Memory Application
(Kesan Kepekatan
Al(NO3)3 ke atas Pembentukan
AuNPs dengan Menggunakan Tindak Balas Hidroterma Suhu Rendah untuk
Aplikasi Ingatan)
S.A. NG1, K.A. RAZAK,1,2*, K.Y. CHEONG1, K.C. AW3
1School
of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, 14300
Nibong Tebal, Pulau Pinang, Malaysia
2NanoBiotechnology
Research and Innovation, INFORMM, Universiti Sains Malaysia, 11800 Pulau Pinang,
Malaysia
3Mechanical
Engineering, The University of Auckland, Auckland, New Zealand
Received: 20 April 2015/Accepted: 18
November 2015
ABSTRACT
Distribution of gold nanoparticles (AuNPs) on a substrate becomes
crucial in nanotechnology applications. This work describes a route to
fabricate AuNPs directly on silicon substrates by using an aluminum template in
hydrothermal reaction at 80°C for 1 h. The effect of aluminum nitrate (Al(NO3)3)
concentration in the hydrothermal bath was investigated. The properties of
AuNPs were studied using field-emission scanning electron microscope (FESEM),
x-ray diffractometer (XRD) and semiconductor
characterization system (SCS). Two distinct sizes of AuNPs were
observed by FESEM. XRD analysis proved the
formation of AuNPs directly on the substrate. AuNPs were embedded between
polymethylsilsesquioxane (PMSSQ) in order to investigate their
effect on memory properties. The sample grown in 0.1 M Al(NO3)3 exhibited the largest hysteresis window (2.6 V) and the
lowest Vth (2.2 V) to turn ‘ON’
the memory device. This indicated that good distribution of FCC structure
AuNPs with 80±4 nm and 42±7 nm of large and small particles produced better
charge storage capability. Charge transport mechanisms of AuNPs embedded in PMSSQ were explained in details whereby electrons from Si are
transported across the barrier by thermionic effects via field-assisted
lowering at the Si-PMSSQ interface with the combination
of the Schottky and Poole Frenkel emission effect in Region 1. Trapped charge
limited current (TCLC) and space charge limited current
(SCLC)
transport mechanism occurred in Region 2 and Region 3.
Keywords: Gold nanoparticles; hydrothermal; memory devices;
template
ABSTRAK
Taburan nanopartikel emas (AuNPs) pada substrat adalah penting dalam
aplikasi nanoteknologi. Kajian ini menerangkan cara untuk menghasilkan
AuNPs secara langsung di atas substrat silikon dengan menggunakan
templat aluminium dalam tindak balas hidroterma pada suhu 80°C
selama 1 jam. Kesan kepekatan aluminium nitrat (Al(NO3)3) dalam
rendaman hidroterma dikaji. Sifat AuNPs telah dikaji menggunakan
pancaran medan mikroskop elektron imbasan (FESEM), pembelauan sinar-x
(XRD) dan sistem pencirian semikonduktor (SCS). Dua saiz berbeza
AuNPs diperhatikan menggunakan FESEM. Analisis XRD membuktikan pembentukan
AuNPs secara langsung ke atas substrat. AuNPs tertanam antara polimetilsilseskuioksana
(PMSSQ) untuk mengkaji kesannya ke atas sifat ingatan. Sampel yang
dihasilkan di dalam 0.1 M Al(NO3)3 menghasilkan tetingkap histeresis
terbesar (2.6 V) dan Vth (2.2 V) terendah untuk menghidupkan peranti
ingatan. Ini menunjukkan pengagihan yang baik oleh struktur FCC
AuNPs dengan 80±4 nm dan 42±7 nm partikel besar dan
kecil menghasilkan keupayaan penyimpanan cas yang lebih baik. Mekanisme
pengangkutan cas di dalam AuNPs tertanam dalam PMSSQ telah dijelaskan
secara terperinci manakala elektron daripada Si diangkut merentasi
halangan oleh kesan termionik melalui perendahan medan-berbantu
pada antara muka Si-PMSSQ dengan gabungan kesan pancaran Schottky
dan Poole Frenkel dalam Rantau 1. Mekanisme pengangkutan perangkap
arus cas terhad (TCLC) dan ruang arus cas terhad (SCLC) berlaku
di Rantau 2 dan 3.
Kata kunci: Hidroterma; nanopartikel emas;
peranti ingatan; templat
REFERENCES
Ahmad, Z., Ooi, P.C., Aw, K.C. & Sayyad, M.H. 2011.
Electrical characteristics of poly(Methylsilsesquioxane) thin films for
non-volatile memory. Solid State Communications 151(4): 297-300.
Cao, L., Zhu, T. & Liu, Z. 2006. Formation mechanism of
nonspherical gold nanoparticles during seeding growth: Roles of anion
adsorption and reduction rate. Journal of Colloid and Interface Science 293(1):
69-76.
Daniel, M.C. & Astruc, D. 2004. Gold nanoparticles:
Assembly, supramolecular chemistry, quantum-size-related properties, and
applications toward biology, catalysis, and nanotechnology. Chemical Reviews 104(1): 293-346.
Das, A., Das, S. & Raychaudhuri, A.K. 2008. Growth of
two-dimensional arrays of uncapped gold nanoparticles on silicon substrates. Bulletin
of Materials Science 31(3): 277-282.
Goh, L., Razak, K., Ridhuan, N., Cheong, K., Ooi, P. &
Aw, K. 2012. Direct formation of gold nanoparticles on substrates using a novel
zno sacrificial templated-growth hydrothermal approach and their properties in
organic memory device. Nanoscale Research Letters 7(1): 563.
Gowd, E.B., Nandan, B., Bigall, N.C., Eychmüller, A.,
Formanek, P. & Stamm, M. 2010. Hexagonally ordered arrays of metallic
nanodots from thin films of functional block copolymers. Polymer 51(12):
2661-2667.
Granmayeh Rad, A., Abbasi, H. & Afzali, M.H. 2011. Gold
nanoparticles: Synthesising, characterizing and reviewing novel application in
recent years. Physics Procedia 22: 203-208.
Gupta, B., Melvin, A. & Prakash, R. 2014. Synthesis of
polyanthranilic acid-au nanocomposites by emulsion polymerization: Development
of dopamine sensor. Bulletin of Materials Science 37(6): 1389-1395.
Haensch, C., Hoeppener, S. & Schubert, U.S. 2010.
Chemical modification of self-assembled silane based monolayers by surface
reactions. Chemical Society Reviews 39(6): 2323- 2334.
Kim, T.W., Yang, Y., Li, F. & Kwan, W.L. 2012.
Electrical memory devices based on inorganic/organic nanocomposites. NPG
Asia Materials 4: e18.
Lai, Y.C., Wang, D.Y., Huang, I.S., Chen, Y.T., Hsu, Y.H.,
Lin, T.Y., Meng, H.F., Chang, T.C., Yang, Y.J., Chen, C.C., Hsu, F.C. &
Chen, Y.F. 2013. Low operation voltage macromolecular composite memory assisted
by graphene nanoflakes. Journal of Materials Chemistry C 1(3): 552-559.
Lee, J.S. 2010. Recent progress in gold nanoparticle-based
non-volatile memory devices. Gold Bulletin 43(3): 189-199.
Liu, C.H. & Yu, X. 2011. Silver nanowire-based
transparent, flexible, and conductive thin film. Nanoscale Res. Lett. 6(1):
75.
Mantri, K., Selvakannan, P., Tardio, J. & Bhargava, S.K.
2013. Synthesis of very high surface area au-sba-15 materials by confinement of
gold nanoparticles formation within silica pore walls. Colloids and Surfaces
A: Physicochemical and Engineering Aspects 429: 149-158.
Mark, P.R. 2013. Forces and interactions between
nanoparticles for controlled structures. PhD Thesis. Rutgers University-
Graduate School-New Brunswick (Unpublished).
Masala, O. & Seshadri, R. 2004. Synthesis routes for
large volumes of nanoparticles. Annu. Rev. Mater. Res. 34: 41-81.
Ng, S.A., Razak, K.A., Goh, L.P., Cheong, K.Y., Ooi, P.C.
& Aw, K.C. 2014. Direct formation of aunps thin film using thermal
evaporated zinc as sacrificial template in hydrothermal method. Journal of
Materials Science: Materials in Electronics 25(5): 2227-2236.
Park, B., Im, K.J., Cho, K. & Kim, S. 2008. Electrical
characteristics of gold nanoparticle-embedded mis capacitors with parylene gate
dielectric. Organic Electronics 9(5): 878-882.
Paul, S., Pearson, C., Molloy, A., Cousins, M., Green, M.,
Kolliopoulou, S., Dimitrakis, P., Normand, P., Tsoukalas, D. & Petty, M.
2003. Langmuir-Blodgett film deposition of metallic nanoparticles and their
application to electronic memory structures. Nano Letters 3: 533-536.
Philip, D. 2008. Synthesis and spectroscopic
characterization of gold nanoparticles. Spectrochimica Acta Part A:
Molecular and Biomolecular Spectroscopy 71(1): 80-85.
Raznjevic, K. 1976. Handbook of Thermodynamic Tables and
Charts. Philadelphia: Hemisphere Publishing Corporation.
Sethuraman, K.,
Ochiai, S., Kojima, K. & Mizutani, T. 2008. Performance of
poly(3-hexylthiophene) organic field-effect transistors on cross-linked
poly(4-vinyl phenol) dielectric layer and solvent effects. Applied Physics
Letters 92(18): 183302.
Sun, X., Fu, Z. & Wu, Z. 2002. Fractal processing of afm
images of rough zno films. Materials Characterization 48(2-3): 169-175.
Taleghani, M. & Riahi-Noori, N. 2013. Synthesis of
alumina nano powder by a gel combustion method. Journal of Ceramic
Processing Research 14(1): 17-21.
Thanh, N.T. & Green, L.A. 2010. Functionalisation of
nanoparticles for biomedical applications. Nano Today 5(3): 213-230.
Ward, C.J., Tronndorf, R., Eustes, A.S., Auad, M.L. &
Davis, E.W. 2014. Seed-mediated growth of gold nanorods: limits of length to
diameter ratio control. Journal of Nanomaterials 2014: Article ID
765618.
*Corresponding
author; email: khairunisak@usm.my |