Sains Malaysiana 45(8)(2016): 1227–1234
Natural
Dye Sensitizer in Dye Sensitized Solar Cell
(Pemeka
Pewarna Semula Jadi dalam Pekaan Pewarna Sel Suria)
NURAIN NAJIHAH ALIAS*
& KHATIJAH AISHA YAACOB
School
of Materials & Mineral Resources Engineering (SMMRE), Engineering Campus,
Universiti Sains Malaysia, Seri Ampangan, 14300 Nibong Tebal, Pulau Pinang, Malaysia
Received:
20 April 2015/Accepted: 25 November 2015
ABSTRACT
Blue-pea flower, turmeric, mulberries, brown rice, purple cabbage
and Indian mulberry leave were successfully form on TiO2 mesoporous
film using immersion method to produce TiO2 mesoporous
photoanode for natural dye sensitized solar cells (DSSCs)
assembly. The TiO2 mesoporous
films were formed after calcinations at 450?C for 30 min. The photoanodes were
dipped in different types of natural dye for 24, 72 and 120 h. The properties
of natural dye were investigated by ultraviolet-visible spectroscopy (UV-vis)
and Fourier transform infrared spectroscopy (FTIR).
From UV-Vis spectroscopy analysis, the wavelength range of the
natural dye studied in this research lays between 350 and 800 nm. The FTIR result of the natural dye shows the present of intermolecular
H-bond, C=O stretching vibration, C-O-C stretching vibration, C=C bending and
C-H bending which was due to the component of anthocyanin, carotenoids and
chlorophyll. The characterization including field emission scanning electron
microscopy (FESEM), energy dispersive x-ray (EDX)
and x-ray diffraction (XRD) were carried out on the TiO2 mesoporous
film. On the other hand, the conductivity of electrolyte for liquid
electrolyte, gel electrolyte and solid electrolyte were also investigated. Gel
electrolyte has the highest conductivity, 26.1 mS/cm while liquid electrolyte
and solid electrolyte obtained 17.34 and 0.45 mS/cm, respectively. Finally,
solar cells were prepared by sandwiching the TiO2 mesoporous
photoanode with Platinum (Pt) counter electrode. The results showed short
circuit current, open circuit current voltage, fill factor and efficiency for
all samples during the present of light. The highest efficiency was obtained
from Blue-pea sample that immersed for 120 h with 0.123% efficiency.
Keywords: DSSCs; natural dye sensitized solar
cells; solar energy
ABSTRAK
Bunga telang, kunyit, malberi, beras perang, kubis ungu dan daun
mengkudu telah melekat pada lapisan TiO2 berliang
meso dengan menggunakan kaedah rendaman bagi menghasilkan TiO2 berliang
meso sebagai fotoanod untuk pewarna semula jadi sebagai pemeka dalam pewarna
sel solar berkepekaan (DSSCs). Lapisan TiO2 berliang
meso terbentuk selepas pengkalsinan pada suhu 450?C selama 30 min. Fotoanod
dicelup dalam pewarna semula jadi selama 24, 72 dan 120 jam. Sifat pewarna
semula jadi telah dicirikan oleh Ultra Violet Visible Spektrofotometer (UV-vis)
dan spektroskopi Fourier infra merah (FTIR). Melalui UV-Vis
spektroskopi, gelombang pewarna semula jadi yang diperoleh adalah antara 350
dan 800 nm. Hasil FTIR pewarna semula jadi menunjukkan
terdapat ikatan H, C=O, C-O-C, C=C dan C-H yang disebabkan oleh komponen
daripada pada antosianin, karotenoid dan klorofil. Medan pancaran mikroskop
elektron imbasan (FESEM), tenaga serakan sinar-x (EDX)
dan pembelauan sinar-x (XRD) telah dijalankan ke atas lapisan
TiO2 berliang meso. Konduktiviti elektrolit cecair,
elektrolit gel dan elektrolit pepejal juga telah dikaji. Elektrolit gel
mencatat konduktiviti tertinggi, 26.1 mS/cm manakala elektrolit cecair dan
elektrolit pepejal memperoleh 17.34 dan 0.45 mS/cm. Fotoanod TiO2 berliang
meso dicantum dengan elektrod kaunter Platinum (Pt). Nilai yang ditunjukkan
adalah semasa litar pintas, voltan litar terbuka, faktor pengisian dan peratus
keberkesanan untuk semua sampel. Bunga telang yang telah direndam selama 120
jam telah mencatat peratus keberkesanan yang tertinggi iaitu 0.123%.
Kata kunci: DSSCs;
pewarna semula jadi sel solar berkepekaan; tenaga solar
REFERENCES
Cameron,
P.J. & Peter, L.M. 2003. Characterization of titanium dioxide blocking
layers in dye-sensitized nanocrystalline solar cells. Physic Chemistry 107(51):
14394-14400.
Grätzel,
M. 2013. Dye-sensitized solar cells. Journal of Photochemistry and
Photobiology C: Photochemistry Reviews 4(2): 145-153.
Haque,
S.A., Palomares, E., Cho, B.M., Green, A.N., Hirata, N., Klug, D.R. &
Durrant, J.R. 2004. Charge separation versus recombination in dye-sensitized
nanocrystalline solar cells: the minimization of kinetic redundancy. J. Am.
Chem. Soc. 127(10): 3456-3462.
Hara,
K., Sayama, K., Ohga, Y., Shinpo, A., Sugab, S. & Arakawa, H. 2001. A
coumarin-derivative dye sensitized nanocrystalline TiO2 solar cell
having a high solar-energy conversion efficiency up to 5.6%. Chemical
Communications 2001: 569-570.
Indriana
Kartini, Menzies, D., Blake, D., da Costa, J.C.D., Meredith, P., Riches J.D.
& Lu, G.Q. 2001. Hydrothermal seeded synthesis of mesoporous titania for
application in dye-sensitised solar cells (DSSCs). Journal of Materials
Chemistry 14: 2917-2921.
Kim,
M-R., Park, S-H., Kim, J-U. & Lee, J-K. 2011. Dye-sensitized solar cells
based on polymer electrolytes. In Solar Cells - Dye-Sensitized Devices, edited
by Kosyachenko, L.A. Croatia: InTech. pp. 223-244.
Kubo,
W., Murakoshi, K., Kitamura, T., Yoshida, S., Haruki, M., Hanabusa, K., Shirai,
H., Wada, Y. & Yanagida, S. 2001. Quasi-solid-state dye-sensitized TiO2 solar cells: Effective charge transport in Mesoporous space filled with gel
electrolytes containing iodide and iodine. The Journal of Physical Chemistry
B 105(51): 12809-12815.
Nakade,
S., Kanzaki, T., Kubo, W., Kitamura, T., Wada, Y. & Yanagida, S. 2004. Role
of electrolytes on charge recombination in dye-sensitized TiO2 solar
cell (1): The case of solar cells using the I-/I3- Redox Couple. The Journal
of Physical Chemistry B 109(8): 3480-3487.
Riyaz
Ahmad Mohamed Ali & Nafarizal Nayan 2010. Fabrication and analysis of
dye-sensitized solar cell using natural dye extracted from dragon fruit. International
Journal of Integrated Engineering 2(12): 29-35.
Sayamaa,
K., Tsukagoshi., S., Mori, T., Hara, K., Ohga, Y., Shinpou, A., Abe, Y., Suga,
S. & Arakawaa, H. 2003. Efficient sensitization of nanocrystalline TiO2 films with cyanine and merocyanine organic dyes. Solar Energy Materials
& Solar Cells 80(1): 47-71.
Shao-Lu
Li, Ke-Jian Jiang, Ke-Feng Shao & Lian-Ming Yang 2006. Novel organic dyes
for efficient dye-sensitized solar cells. Chemical Communications (Urgent
High Quality Communications From Across the Chemical Sciences) 2006:
2792-2794.
Tokuhisa,
H. & Hammond, P.T. 2003. Solid state photovoltaic thin film using TiO2 organic dyes and layer by layer polyelectrolyte nanocomposite. Advanced
Functional Material 13(11): 831-839.
Wu,
J., Lan, Z., Wang, D., Hao, S., Lin, J., Huang, Y., Yin, S. & Sato, T.
2006. Gel polymer electrolyte based on poly(acrylonitrile-co-styrene) and a
novel organic iodide salt for quasi-solid state dye-sensitized solar cell. Electrochimica 51(20): 4243-4249.
Zhu,
K., Kopidakis, N., Neale, N.R., van de Lagemaat, J. & Frank, A.J. 2006.
Influence of surface area on charge transport and recombination in
dye-sensitized TiO2 solar cells. Physical Chemistry 110(50):
25174-25180.
*Corresponding
author; email: ainalias@yahoo.com
|