Sains Malaysiana 45(8)(2016): 1227–1234

 

Natural Dye Sensitizer in Dye Sensitized Solar Cell

(Pemeka Pewarna Semula Jadi dalam Pekaan Pewarna Sel Suria)

 

NURAIN NAJIHAH ALIAS* & KHATIJAH AISHA YAACOB

 

School of Materials & Mineral Resources Engineering (SMMRE), Engineering Campus, Universiti Sains Malaysia, Seri Ampangan, 14300 Nibong Tebal, Pulau Pinang, Malaysia

 

Received: 20 April 2015/Accepted: 25 November 2015

 

ABSTRACT

Blue-pea flower, turmeric, mulberries, brown rice, purple cabbage and Indian mulberry leave were successfully form on TiO2 mesoporous film using immersion method to produce TiO2 mesoporous photoanode for natural dye sensitized solar cells (DSSCs) assembly. The TiO2 mesoporous films were formed after calcinations at 450?C for 30 min. The photoanodes were dipped in different types of natural dye for 24, 72 and 120 h. The properties of natural dye were investigated by ultraviolet-visible spectroscopy (UV-vis) and Fourier transform infrared spectroscopy (FTIR). From UV-Vis spectroscopy analysis, the wavelength range of the natural dye studied in this research lays between 350 and 800 nm. The FTIR result of the natural dye shows the present of intermolecular H-bond, C=O stretching vibration, C-O-C stretching vibration, C=C bending and C-H bending which was due to the component of anthocyanin, carotenoids and chlorophyll. The characterization including field emission scanning electron microscopy (FESEM), energy dispersive x-ray (EDX) and x-ray diffraction (XRD) were carried out on the TiO2 mesoporous film. On the other hand, the conductivity of electrolyte for liquid electrolyte, gel electrolyte and solid electrolyte were also investigated. Gel electrolyte has the highest conductivity, 26.1 mS/cm while liquid electrolyte and solid electrolyte obtained 17.34 and 0.45 mS/cm, respectively. Finally, solar cells were prepared by sandwiching the TiO2 mesoporous photoanode with Platinum (Pt) counter electrode. The results showed short circuit current, open circuit current voltage, fill factor and efficiency for all samples during the present of light. The highest efficiency was obtained from Blue-pea sample that immersed for 120 h with 0.123% efficiency.

 

Keywords: DSSCs; natural dye sensitized solar cells; solar energy

 

ABSTRAK

Bunga telang, kunyit, malberi, beras perang, kubis ungu dan daun mengkudu telah melekat pada lapisan TiO2 berliang meso dengan menggunakan kaedah rendaman bagi menghasilkan TiO2 berliang meso sebagai fotoanod untuk pewarna semula jadi sebagai pemeka dalam pewarna sel solar berkepekaan (DSSCs). Lapisan TiO2 berliang meso terbentuk selepas pengkalsinan pada suhu 450?C selama 30 min. Fotoanod dicelup dalam pewarna semula jadi selama 24, 72 dan 120 jam. Sifat pewarna semula jadi telah dicirikan oleh Ultra Violet Visible Spektrofotometer (UV-vis) dan spektroskopi Fourier infra merah (FTIR). Melalui UV-Vis spektroskopi, gelombang pewarna semula jadi yang diperoleh adalah antara 350 dan 800 nm. Hasil FTIR pewarna semula jadi menunjukkan terdapat ikatan H, C=O, C-O-C, C=C dan C-H yang disebabkan oleh komponen daripada pada antosianin, karotenoid dan klorofil. Medan pancaran mikroskop elektron imbasan (FESEM), tenaga serakan sinar-x (EDX) dan pembelauan sinar-x (XRD) telah dijalankan ke atas lapisan TiO2 berliang meso. Konduktiviti elektrolit cecair, elektrolit gel dan elektrolit pepejal juga telah dikaji. Elektrolit gel mencatat konduktiviti tertinggi, 26.1 mS/cm manakala elektrolit cecair dan elektrolit pepejal memperoleh 17.34 dan 0.45 mS/cm. Fotoanod TiO2 berliang meso dicantum dengan elektrod kaunter Platinum (Pt). Nilai yang ditunjukkan adalah semasa litar pintas, voltan litar terbuka, faktor pengisian dan peratus keberkesanan untuk semua sampel. Bunga telang yang telah direndam selama 120 jam telah mencatat peratus keberkesanan yang tertinggi iaitu 0.123%.

 

Kata kunci: DSSCs; pewarna semula jadi sel solar berkepekaan; tenaga solar

REFERENCES

Cameron, P.J. & Peter, L.M. 2003. Characterization of titanium dioxide blocking layers in dye-sensitized nanocrystalline solar cells. Physic Chemistry 107(51): 14394-14400.

Grätzel, M. 2013. Dye-sensitized solar cells. Journal of Photochemistry and Photobiology C: Photochemistry Reviews 4(2): 145-153.

Haque, S.A., Palomares, E., Cho, B.M., Green, A.N., Hirata, N., Klug, D.R. & Durrant, J.R. 2004. Charge separation versus recombination in dye-sensitized nanocrystalline solar cells: the minimization of kinetic redundancy. J. Am. Chem. Soc. 127(10): 3456-3462.

Hara, K., Sayama, K., Ohga, Y., Shinpo, A., Sugab, S. & Arakawa, H. 2001. A coumarin-derivative dye sensitized nanocrystalline TiO2 solar cell having a high solar-energy conversion efficiency up to 5.6%. Chemical Communications 2001: 569-570.

Indriana Kartini, Menzies, D., Blake, D., da Costa, J.C.D., Meredith, P., Riches J.D. & Lu, G.Q. 2001. Hydrothermal seeded synthesis of mesoporous titania for application in dye-sensitised solar cells (DSSCs). Journal of Materials Chemistry 14: 2917-2921.

Kim, M-R., Park, S-H., Kim, J-U. & Lee, J-K. 2011. Dye-sensitized solar cells based on polymer electrolytes. In Solar Cells - Dye-Sensitized Devices, edited by Kosyachenko, L.A. Croatia: InTech. pp. 223-244.

Kubo, W., Murakoshi, K., Kitamura, T., Yoshida, S., Haruki, M., Hanabusa, K., Shirai, H., Wada, Y. & Yanagida, S. 2001. Quasi-solid-state dye-sensitized TiO2 solar cells: Effective charge transport in Mesoporous space filled with gel electrolytes containing iodide and iodine. The Journal of Physical Chemistry B 105(51): 12809-12815.

Nakade, S., Kanzaki, T., Kubo, W., Kitamura, T., Wada, Y. & Yanagida, S. 2004. Role of electrolytes on charge recombination in dye-sensitized TiO2 solar cell (1): The case of solar cells using the I-/I3- Redox Couple. The Journal of Physical Chemistry B 109(8): 3480-3487.

Riyaz Ahmad Mohamed Ali & Nafarizal Nayan 2010. Fabrication and analysis of dye-sensitized solar cell using natural dye extracted from dragon fruit. International Journal of Integrated Engineering 2(12): 29-35.

Sayamaa, K., Tsukagoshi., S., Mori, T., Hara, K., Ohga, Y., Shinpou, A., Abe, Y., Suga, S. & Arakawaa, H. 2003. Efficient sensitization of nanocrystalline TiO2 films with cyanine and merocyanine organic dyes. Solar Energy Materials & Solar Cells 80(1): 47-71.

Shao-Lu Li, Ke-Jian Jiang, Ke-Feng Shao & Lian-Ming Yang 2006. Novel organic dyes for efficient dye-sensitized solar cells.  Chemical Communications (Urgent High Quality Communications From Across the Chemical Sciences) 2006: 2792-2794.

Tokuhisa, H. & Hammond, P.T. 2003. Solid state photovoltaic thin film using TiO2 organic dyes and layer by layer polyelectrolyte nanocomposite. Advanced Functional Material 13(11): 831-839.

Wu, J., Lan, Z., Wang, D., Hao, S., Lin, J., Huang, Y., Yin, S. & Sato, T. 2006. Gel polymer electrolyte based on poly(acrylonitrile-co-styrene) and a novel organic iodide salt for quasi-solid state dye-sensitized solar cell. Electrochimica 51(20): 4243-4249.

Zhu, K., Kopidakis, N., Neale, N.R., van de Lagemaat, J. & Frank, A.J. 2006. Influence of surface area on charge transport and recombination in dye-sensitized TiO2 solar cells. Physical Chemistry 110(50): 25174-25180.

 

 

*Corresponding author; email: ainalias@yahoo.com

 

 

 

previous