Sains Malaysiana 45(8)(2016): 1265–1273
Pertumbuhan
dan Penambahbaikan Nanokomposit Ag-ZnO untuk Aktiviti Fotomangkin
(Growth
and Improvement of Ag-ZnO Nanocomposites for Photocatalytic Activity)
M.T.M. AYOB1, H.M.K. MOHD1, I. ABDUL RAHMAN1,2, F. MOHAMED1,2, N.M. HIDZIR1,2
& S. RADIMAN1,2*
1Pusat Pengajian Fizik
Gunaan, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia
43600
Bangi, Selangor Darul Ehsan, Malaysia
2Pusat Penyelidikan
Teknologi Nuklear, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia,
43600 Bangi, Selangor Darul Ehsan, Malaysia
Received:
20 April 2015/Accepted: 26 November 2015
ABSTRAK
Kami melaporkan hasil kajian terhadap nanokomposit Ag-ZnO dengan
nisbah berat yang berbeza bagi Ag:ZnO (0:10, 7:10 & 25:10) yang telah
disediakan melalui kaedah sonokimia. Kajian fotomangkin terhadap nanokomposit
Ag-ZnO menunjukkan peningkatan kecekapan fotomangkin terhadap foto-penguraian
larutan akues metilena biru berbanding nanobahan ZnO tulen di bawah penyinaran
cahaya nampak. Sampel Ag-ZnO pada nisbah 7:10 menunjukkan aktiviti fotomangkin
terbaik dan mencapai kadar penguraian sehingga 94% bagi tempoh masa penguraian
selama 80 min, diikuti 86% bagi sampel ZnO tulen dengan menggunakan kaedah yang
sama. Morfologi, struktur bahan, sifat optik dan kehabluran bagi nanokomposit
Ag-ZnO juga dibincangkan menerusi data yang diperoleh melalui mikroskop
elektron transmisi, spektroskopi ultralembayung-cahaya nampak dan difraktometer
analisis sinar-X. Hasil kajian menunjukkan bahawa dengan penambahan zarah Ag
kepada ZnO telah meningkatkan kadar serapan cahaya bagi ZnO di kawasan cahaya
nampak dan meningkatkan kadar pemisahan cas foto-aruhan bagi menghasilkan
rawatan air tercemar pewarna yang lebih baik.
Kata kunci: Ag-ZnO; foto-penguraian; metilena biru; rawatan air
tercemar
ABSTRACT
We report the research results of Ag-ZnO nanocomposites with
different weight ratio of Ag:ZnO (0:10, 7:10 & 25:10) which were prepared
by sonochemical method. The photocatalytic study of Ag-ZnO nanocomposites
showed enhanced photocatalytic efficiency of methylene blue aqueous solution
photodegradation compared with the pure ZnO nanoparticle under visible light
irradiation. The Ag-ZnO at a ratio of 7:10 displayed the best photocatalytic
activity and reached 94% degradation rate for 80 min degradation time, followed
by 86% for pure ZnO by the same method. The morphological, structural, optical
properties and crystallinity of the Ag-ZnO nanocomposites were also elucidated
with the data obtained from transmission electron microscopy,
ultraviolet-visible spectroscopy and X-ray diffractometer analyses,
respectively. The results showed that by adding particles of Ag to ZnO
increases the absorbance of ZnO in the visible region and enhances the
photoinduced charge separation rate for better wastewater treatment.
Keywords: Ag-ZnO; methylene blue;
photodegradation; wastewater treatment
REFERENCE
Alammar, T. & Mudring, A.V. 2009. Facile
ultrasound-assisted synthesis of ZnO nanorods in an ionic liquid. Material
Letter 63(9-10): 732-735.
Anandan, S., Vinu, A., Sheeja Lovely, K.L.P.,
Gokulakrishnan, N., Srinivasu, P., Mori, T., Murugesan, V., Sivamurugan, V.
& Ariga, K. 2007. Photocatalytic activity of La-doped ZnO for the
degradation of monocrotophos in aqueous suspension. Journal of Molecular
Catalysis A: Chemical 266(1-2): 149-157.
Baletto, F., Mottet, C., Rapallo, A., Rossi, G.
& Ferrando, R. 2004. Growth and energetic stability of AgNi
core–shell clusters. Surface Science 566(1): 192-196.
Basak, S., Tiwari, V., Fan, J., Achilefu, S.,
Sethi, V. & Biswas, P. 2011. Single step aerosol synthesis of
nanocomposites by aerosol routes: γ-Fe2O3/SiO2 and their
functionalization. Journal of Material Research 26(10): 1225-1233.
Chen, T., Zheng, Y., Lin, J.M. & Chen, G.
2008. Study on the photocatalytic degradation of methyl orange in water using
Ag/ZnO as catalyst by liquid chromatography electrospray ionization ion-trap
mass spectrometry. Journal of the American Society for Mass Spectrometry 19(7):
997-1003.
Chen, Y.W., Qiao, Q., Liu, Y.C. & Yang, G.L.
2009. Size-controlled synthesis and optical properties of small-sized ZnO
nanorods. The Journal of Physical Chemistry C 113(18): 7497-7502.
Chiu, W.S., Khiew, P.S., Cloke, M., Isa, D.,
Tan, T.K., Radiman, S., Abd. Shukor, R., Abd. Hamid, M.A., Huang, N.M., Lim,
H.N. & Chia, C.H. 2010. Photocatalytic study of two-dimensional ZnO
nanopellets in the decomposition of methylene blue. Chemical Engineering
Journal 158(2): 345-352.
Daneshvar, N., Salari, D. & Khataee, A.R.
2004. Photocatalytic degradation of azo dye acid red 14 in water on ZnO as an
alternative catalyst to TiO2. Journal of Photochemistry & Photobiology
A: Chemistry 162(2-3): 317-322.
Dar, G.N., Umar, A., Zaidi, S.A., Baskoutas, S.,
Hwang, S.W., Abaker, M., Al-Hajry, A. & Al-Sayari, S.A. 2012. Ultra-high
sensitive ammonia chemical sensor based on ZnO nanopencils. Talanta 89(1):
155-161.
Debanath, M.K. & Karmakar, S. 2013. Study of
blueshift of optical band gap in zinc oxide (ZnO) nanoparticles prepared by
low-temperature wet chemical method. Materials Letters 111(1): 116-119.
Dermenci, K.B., Ebin, B. & Gürmen, S. 2012. Production of
spherical Ag/ZnO nanocomposite particles for photocatalytic applications. World
Academy of Science & Technology 67(1): 682-684.
Ding, Y. & Wang, Z.L. 2009. Structures of
planar defects in ZnO nanobelts and nanowires. Micron 40(3): 335-342.
Dodd, A.C., McKinley, A.J., Saunders, M. &
Tsuzuki, T. 2006. Effect of particle size on the photocatalytic activity of
nanoparticulate zinc oxide. Journal of Nanoparticle Research 8(1):
43-51.
Georgekutty, R., Seery, M.K. & Pillai, S.C.
2008. A highly efficient Ag-ZnO photocatalyst: synthesis, properties and
mechanism. The Journal of Physical Chemistry C 112(35): 13563-13570.
Gu, C.D., Cheng, C., Huang, H.Y., Wong, T.L.,
Wang, N. & Zhang, T.Y. 2009. Growth and photocatalytic activity of
dendrite-like ZnO@Ag heterostructure nanocrystals. Crystal Growth &
Design 9(7): 3278-3285.
Han, Z., Liao, L., Wu, Y., Pan, H., Shen, S.
& Chen, J. 2012. Synthesis and photocatalytic application of oriented
hierarchical ZnO flower-rod architectures. Journal of Hazardous Materials 6(217):
100-106.
Henrich, V.E. & Cox, P.A. 1994. The
Surface Science of Metal Oxides. Cambridge: University Press.
Hong, R.Y., Li, J.H., Chen, L.L., Liu, D.Q., Li,
H.Z., Zheng, Y. & Ding, J. 2009. Synthesis, surface modification and
photocatalytic property of ZnO nanoparticles. Powder Technology 189(3):
426-432.
Jin, Y., Cui, Q., Wang, K., Hao, J., Wang, Q. &
Zhang, J. 2011. Investigation of photoluminescence in undoped and
Ag-doped ZnO flowerlike nanocrystals. Journal of Applied Physics
109(5): 53521-53525.
Jingjing, W., Nicolas, S., Pierre-Antoine, A.
& Marie-Paule, P. 2015. Surface plasmon resonance properties of silver
nanocrystals differing in size and coating agent ordered in 3D supracrystals. Chemistry
of Materials 27(16): 5614-5621.
Kalandaragh, Y.A., Khodayari, A. & Behboudnia, M. 2009.
Ultrasound-assisted synthesis of ZnO semiconduct nanostructures. Materials Science in Semiconductor
Processing 12(4-5): 142-145.
Karunakaran, C., Rajeswari, V. & Gomathisankar, P. 2011.
Combustion synthesis of ZnO and Ag-doped ZnO and their bactericidal and
photocatalytic activities. Superlattices and Microstructures 50(3):
234-241.
Kuo, T.J., Lin, C.N., Kuo, C.L. & Huang, M.H. 2007.
Growth of ultralong ZnO nanowires on silicon substrates by vapor transport and
their use as recyclable photocatalysts. Chemistry of Materials 19(21):
5143-5147.
Lany, S. & Zunger, A. 2008. Assessment of correction
methods for the band-gap problem and for finite-size effects in supercell
defect calculations: Case studies for ZnO and GaAs. Physical Review. B:
Condensed Matter 78(23): 2351041-2351066.
Li, L., Salvador, P.A. & Rohrer, G.S. 2014.
Photocatalysts with internal electric fields. Nanoscale 6(1): 24-42.
Li, L., Wang, W., Liu, H., Liu, X., Song, Q. & Ren, S.
2009. First principles calculations of electronic band structure and optical
properties of Cr-doped ZnO. The Journal of Physical Chemistry C 113(19):
8460-8464.
Min, Y., Akbulut, M., Kristiansen, K., Golan, Y. &
Israelachivili, J. 2008. Role of interparticle and external forces on the
assembly and properties of nanoparticle materials. Nature Materials 7(7):
527-538.
Panizz, M., Barbucci, A., Ricotti, R. & Cerisola, G.
2007. Electrochemical degradation of methylene blue. Separation and
Purification Technology 54(3): 382-387.
Pawinrat, P., Mekasuwandumrong, O. & Panpranot, J. 2009.
Synthesis of Au-ZnO and Pt-ZnO nanocomposites by one-step flame spray pyrolysis
and its application for photocatalytic degradation of dyes. Catalysis
Communications 10(10): 1380-1385.
Pradhan, M., Sarkar, S., Sinha, A.K., Basu, M. & Pal, T.
2010. High yield synthesis of 1D Rh nanostructure from surfactant mediated
reductive pathway and their shape transformation. The Journal of Physical
Chemistry C 114(39): 16129-16142.
Racles, C., Nistor, A. & Cazacu, M. 2013. A
silica-silver nanocomposite obtained by sol-gel method in the presence of
silver nanoparticles. Central European Journal of Chemistry 11(10):
1689-1698.
Soltaninezhad, M. & Aminifar, A. 2011. Study
nanostructures of semiconductor zinc oxide (ZnO) as a photocatalyst for the
degradation of organic pollutants. International Journal of Nano Dimension 2(2):
137-145.
Tian, C., Zhang, Q., Wu, A., Jiang, M., Liang, Z., Jiang, B.
& Fu, H. 2012. Cost-effective large-scale synthesis of ZnO photocatalyst
with excellent performance for dye photodegradation. Chemical Communications 48(23): 2858-2860.
Ullah, R. & Dutta, J. 2008. Photocatalytic degradation
of organic dyes with manganese-doped ZnO nanoparticles. Journal of Hazardous
Materials 156(1-3): 194-200.
Ye, X.Y., Zhou, Y.M., Sun, Y.Q., Chen, J. & Wang, Z.Q.
2009. Preparation and characterization of Ag/ZnO composites via a simple
hydrothermal route. Journal of Nano Research 11(5): 1159-1166.
Zhan, Z., Chen, D., Lv, P., Liu, D., Yan, F., Chen, X. &
Huang, F. 2009. Subsolidus phase relations in the system ZnO–B2O3–
V2O5. Journal of Alloys and Compounds 475(1-2): 122-125.
Zheng, Y., Chen, C., Zhan, Y., Lin, X., Zheng, Q., Wei, K.
& Zhu, J. 2008. Photocatalytic activity of Ag/ZnO heterostructure
nanocatalyst: correlation between structure and property. The Journal of
Physical Chemistry C 112(29): 10773-10777.
Zheng, Y.H., Zheng, L.R., Zhan, Y.Y., Lin, X.Y., Zheng, Q.
& Wei, K.M. 2007. Ag/ZnO heterostructure nanocrystals: synthesis,
characterization and photocatalysis. Inorganic Chemistry 46(17):
6980-6986.
Zhu, L., Zhang, J., Chen, Z., Liu, K. & Gao, H. 2013.
Effect of Cu2O morphology on photocatalytic
hydrogen generation and chemical stability of TiO2/Cu2O
composite. Journal of Nanoscience and Nanotechnology 13(7): 5104-5108.
*Corresponding
author; email: shahidan@ukm.edu.my
|