Sains Malaysiana 45(8)(2016): 1281–1287

 

Influence of Crystal Structural Orientation on Impedance and Piezoelectric Properties of KNN Ceramic Prepared using Sol-Gel Method

(Pengaruh Orientasi Struktur Hablur ke atas Sifat Impedans dan Piezoelektrik Seramik KNN yang Disediakan menggunakan Kaedah Sol-Gel)

 

I. IZZUDDIN, M.H.H. JUMALI*, Z. ZALITA, J.N. HUWAIDA & R. AWANG

 

Pusat Pengajian Fizik Gunaan, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia

43600 Bangi, Selangor, Malaysia

 

Received: 20 April 2015/Accepted: 26 November 2015


ABSTRACT

The aim of this study was to investigate the effect of structural orientation on the impedance and piezoelectric properties of Ka0.5Na0.5NbO3 (KNN) ceramic synthesized using modified sol-gel method. Dried xerogel was heated at 800oC for 90 min and the aggregates were grinded to powder form. SEM micrographs confirmed that the powder consist of bimodal particles in nm and μm size regimes. The powder was compacted into 13 mm diameter pellet and sintered at 1000oC for 6 h. Then the pellets were poled at 4.0kV/mm at 100oC for 30 min. The as-sintered pellets displayed different sizes of cuboidal granules forming a relatively dense sample. The XRD and Raman spectroscopy results confirmed the formation of perovskite KNN with monoclinic crystal structure. The compositional analysis using Vegard’s law showed that the K:Na ratio was 0.5:0.5. Dramatic intensity enhancement in (110) reflection and subsequent reduction in (100) reflection as observed in X-ray diffractograms for the poled pellet suggest permanent shift in crystal orientation. Consequently, the Nyquist impedance plot of a Debye type semicircular arc was altered to a combination of a depressed semicircular arc. Unlike the initial plot, the real impedance, Zexhibited frequency dependence at low frequency regime. In addition, the relaxation time, τ of KNN sample shifted to lower frequency after the structural re-orientation while piezoelectric constant, d33 along (110) direction significantly improved from 5 to 35 pC/N.

 

Keywords: Domain; d33 constant; nanosize; poling; Vegards law

 

ABSTRAK

Tujuan penyelidikan ini ialah untuk mengkaji kesan orientasi stuktur hablur ke atas sifat elektrik impedan dan piezoelektrik bagi seramik Ka0.5Na0.5NbO3 (KNN) yang disintesis melalui kaedah sol gel yang diubah suai. Xerogel KNN yang telah kering dipanaskan pada suhu 800oC selama 90 min dan agregat yang terhasil dikisar untuk menghasilkan serbuk KNN. Mikrograf SEM mengesahkan saiz partikel KNN yang disintesis terdiri daripada partikel bimod iaitu dalam rejim bersaiz nm dan μm. Seterusnya KNN dipadatkan ke bentuk pelet berdiameter 13 mm dan disinter pada suhu 1000oC selama 6 jam diikuti dengan pengutuban pada 4kV/mm pada suhu 100oC selama 30 min. Sampel KNN yang disinter menunjukkan pembentukan butiran kuboid pelbagai saiz yang secara relatifnya membentuk sampel yang tumpat. Hasil pencirian XRD dan Raman mengesahkan pembentukan perovskit KNN dengan struktur hablur monoklinik. Analisis komposisi menggunakan hukum Vegard menunjukkan nisbah bagi K:Na adalah 0.5:0.5. Peningkatan keamatan yang mendadak pada satah (110) dan penurunan ketara keamatan pada satah (100) seperti yang diperhatikan pada difraktogram sinar-X bagi pelet yang dikutubkan menandakan peralihan kekal terhadap orientasi hablur. Akibatnya, graf impedans Nyquist lengkungan semibulatan jenis Debye berubah kepada gabungan lengkungan semibulatan terhimpit dan permulaan bagi lengkungan lain pada frekuensi rendah. Tidak seperti plot yang asal, graf impedan nyata, Zadalah bebas frekuensi pada rejim frekuensi rendah. Selain itu, masa santaian, τ bagi sampel KNN berganjak kepada frekuensi yang lebih rendah selepas pengorientasi semula manakala pemalar piezoelektrik, d33 pada arah (110) menokok secara signifikan daripada 5 kepada 35 pC/N.

 

Kata kunci: Domain; hukum Vegards; pemalar d33; pengutuban; saiz nano

REFERENCES

Cheng, X., Gou, Q., Wu, J., Wang, X., Zhang, B., Xiao, D., Zhu, J., Wang, X. & Lou, X. 2014. Dielectric, ferroelectric, and piezoelectric properties in potassium sodium niobate ceramics with rhombohedral-orthorhombic and orthorhombic-tetragonal phase boundaries. Ceramics International 40(4): 5771-5779.

Denton, A.R. & Ashcroft, N.W. 1991. Vegard’s law. Physical Review A 43(6): 3161-3164.

Dolhen, M., Mahajan, A., Pinho, R., Costa, E., Trolliard, G. & Vilarinho, P.M. 2015. Sodium potassium niobate (K0.5Na0.5NbO3, KNN) thick films by electrophoretic deposition. Journal of RCS Advances 5: 4698-4706.

Guo, H., Zhang, S., Beckman, S.P. & Tan, X. 2013. Microstructural origin for the piezoelectricity evolution in (K0.5Na0.5)NbO3- based lead-free ceramics. Journal of Applied Physics 114: 154102.

Hollenstein, E., Damjanovic, D. & Setter, N. 2007. Temperature stability of the piezoelectric properties of Li-modified KNN ceramics. Journal of the European Ceramic Society 27(13- 15): 4093-4097.

Izzuddin, I., Jumali, M.H.H. & Zalita, Z. 2014. Structural and electrical evaluation of KNN ceramic. AIP Conference Proceedings in Selangor, Malaysia from 9-11 April. 1614: 90.

Johscher, A.K. 1983. Dielectric Relaxation in Solid. London: Chelsea Dielectric Press. pp 56-57.

Kim, J.S., Choi, B.C., Jeong, J.H., Chung, S.T., Cho, S. & Kim, I.W. 2009. Low-frequency dielectric dispersion and impedance spectroscopy of lead-free (Na0.5Bi0.5)TiO3 (NBT) ferroelectric ceramics. Journal of the Korean Physical Society 55(2): 879-883.

Li, G., Wu, X.Q., Ren, W., Shi, P., Chen, X.F. & Yao, X. 2012. Effects of excess amount of K and Na on properties of (K0.48Na0.52)NbO3 thin films. Ceramics International 38(Supp. 1: S279-S281).

Liu, G.Z., Wang, C., Wang, C.C., Qiu, J., He, M., Xing, J., Jin, K.J., Lu, H.B. & Yang, G.Z. 2008. Effects of interfacial polarization on the dielectric properties of BiFeO3 thin film capacitors. Applied Physics Letters 92(12): 122903.

Matsubara, M., Yamaguchi, T., Sakamoto, W., Kikuta, K., Yogo, T. & Hirano, S. 2005. Processing and piezoelectric properties of lead-free (K,Na)(Nb,Ta)O3 ceramics. Journal of American Ceramic Society 88: 1190-1196.

McConnell, A.A., Aderson, J.S. & Rao, C.N.R. 1976. Raman spectra of niobium oxides. Spectrochimica Acta Part A: Molecular Spectroscopy 32(5): 1067-1076.

Prasad, K., Bhagat, S., Priyanka, AmarNath, K., Chandra, K.P. & Kulkarni, A.R. 2010. Electrical properties of BaY0.5Nb0.5O3 ceramic: Impedance spectroscopy analysis. Physica B: Condensed Matter 405(17): 3564-3571.

Rubio-Marcos, F., Marchet, P., Merle-Méjean, T. & Fernandez, J.F. 2010a. Role of sintering time, crystalline phases and symmetry in the piezoelectric properties of lead-free KNN-modified ceramics. Materials Chemistry and Physics 123(1): 91-97.

Rubio-Marcos, F., Romero, J.J., Ochoa, D.A., García, J.E., Perez, R. & Fernandezz, J.F. 2010b. Effects of poling process on KNN-modified piezoceramic properties. J. Am. Ceram. Soc. 93(2): 318-321.

Rubio-Marcos, F., Romero, J.J., Martín-Gonzalez, M.S. & Fernández, J.F. 2010c. Effect of stoichiometry and milling processes in the synthesis and the piezoelectric properties of modified KNN nanoparticles by solid state reaction.  Journal of the European Ceramic Society 30(13): 2763-2771.

Safari, A. & Akdogan, E.K. 2008. Piezoelectric and Acoustic Materials for Transducer Applications. New York: Springer. p. 44.

Saeri, M.R., Barzegar, A. & Ahmadi Moghadam, H. 2011. Investigation of nano particle additives on lithium doped KNN lead free piezoelectric ceramics. Ceramics International 37(8): 3083-3087.

Saito, Y., Takao, H., Tani, T., Nonoyama, T., Takatori, K., Homma, T., Nagaya, T. & Nakamura, M. 2004. Lead-free piezoceramics. Nature 432: 84-87.

Schmidt, R., Eerenstein, W., Winiecki, T., Morrison, F.D. & Midgley, P.A. 2007. Impedance spectroscopy of epitaxial multiferroic thin films. Physical Review B 75(24): 245111.

Tan, C.K.I., Yao, K., Goh, P.C. & Ma, J. 2012. 0.94(K0.5Na0.5) NbO3–0.06LiNbO3 piezoelectric ceramics prepared from the solid state reaction modified with polyvinylpyrrolidone (PVP) of different molecular weights. Ceramics International 38(3): 2513-2519.

Wei, N., Wang, J., Li, B., Huan, Y. & Li, L. 2015. Improvement of the piezoelectric and ferroelectric properties of (K, Na)0.5NbO3 ceramics via two-step calcination-milling route. Ceramics International 41(8): 9555-9559.

Wongsaenmai, S., Ananta, S. & Yimnirun, R. 2012. Effect of Li addition on phase formation behavior and electrical properties of (K0.5Na0.5)NbO3 lead free ceramics. Ceramics International 38(1): 147-152.

Zhao, Y., Zhao, Y., Huang, R., Liu, R. & Zhou, H. 2012. Poling field dependence of ferroelectric domains in tetragonal KNNLN ceramics. Ceramics International 38: 6067-6070.

Zhengfa, L., Yongxiang, L. & Jiwei, Z. 2011. Grain growth and piezoelectric property of KNN-based lead-free ceramics. Current Applied Physics 11(3, Supplement): S2-S13.

 

 

*Corresponding author; email: hafizhj@ukm.edu.my

 

 

 

previous