Sains Malaysiana 45(8)(2016): 1281–1287
Influence
of Crystal Structural Orientation on Impedance and Piezoelectric Properties of
KNN Ceramic Prepared using Sol-Gel Method
(Pengaruh
Orientasi Struktur Hablur ke atas Sifat Impedans dan Piezoelektrik Seramik KNN yang Disediakan menggunakan Kaedah
Sol-Gel)
I. IZZUDDIN, M.H.H. JUMALI*, Z. ZALITA, J.N. HUWAIDA
& R. AWANG
Pusat Pengajian Fizik Gunaan, Fakulti Sains dan Teknologi, Universiti
Kebangsaan Malaysia
43600 Bangi, Selangor, Malaysia
Received: 20 April 2015/Accepted: 26 November 2015
ABSTRACT
The aim of this study was to investigate the effect of structural
orientation on the impedance and piezoelectric properties of Ka0.5Na0.5NbO3 (KNN)
ceramic synthesized using modified sol-gel method. Dried xerogel was heated at
800oC for 90 min and the aggregates were grinded to
powder form. SEM micrographs confirmed that the powder consist of
bimodal particles in nm and μm size regimes. The powder was compacted into
13 mm diameter pellet and sintered at 1000oC
for 6 h. Then the pellets were poled at 4.0kV/mm at 100oC
for 30 min. The as-sintered pellets displayed different sizes of cuboidal
granules forming a relatively dense sample. The XRD and
Raman spectroscopy results confirmed the formation of perovskite KNN with
monoclinic crystal structure. The compositional analysis using Vegard’s law
showed that the K:Na ratio was 0.5:0.5. Dramatic
intensity enhancement in (110) reflection and subsequent reduction in (100)
reflection as observed in X-ray diffractograms for the poled pellet suggest
permanent shift in crystal orientation. Consequently, the Nyquist impedance
plot of a Debye type semicircular arc was altered to a combination of a
depressed semicircular arc. Unlike the initial plot, the real impedance, Z′ exhibited frequency dependence at low
frequency regime. In addition, the relaxation time, τ of KNN sample
shifted to lower frequency after the structural re-orientation while
piezoelectric constant, d33 along (110) direction significantly
improved from 5 to 35 pC/N.
Keywords: Domain; d33 constant; nanosize; poling;
Vegards law
ABSTRAK
Tujuan penyelidikan ini ialah untuk mengkaji kesan
orientasi stuktur hablur ke atas sifat elektrik impedan dan piezoelektrik
bagi seramik Ka0.5Na0.5NbO3
(KNN)
yang disintesis melalui kaedah sol gel yang diubah suai. Xerogel KNN yang
telah kering dipanaskan pada suhu 800oC
selama 90 min dan agregat yang terhasil dikisar untuk menghasilkan
serbuk KNN.
Mikrograf SEM mengesahkan saiz partikel
KNN
yang disintesis terdiri daripada partikel bimod iaitu
dalam rejim bersaiz nm dan μm. Seterusnya KNN dipadatkan ke bentuk pelet berdiameter
13 mm dan disinter pada suhu 1000oC
selama 6 jam diikuti dengan pengutuban pada 4kV/mm pada suhu 100oC
selama 30 min. Sampel KNN yang disinter menunjukkan pembentukan
butiran kuboid pelbagai saiz yang secara relatifnya membentuk sampel
yang tumpat. Hasil pencirian XRD dan
Raman mengesahkan pembentukan perovskit KNN dengan struktur hablur monoklinik.
Analisis komposisi menggunakan hukum Vegard menunjukkan nisbah bagi
K:Na adalah 0.5:0.5. Peningkatan
keamatan yang mendadak pada satah (110) dan penurunan ketara keamatan
pada satah (100) seperti yang diperhatikan pada difraktogram sinar-X
bagi pelet yang dikutubkan menandakan peralihan kekal terhadap orientasi
hablur. Akibatnya, graf impedans Nyquist lengkungan semibulatan
jenis Debye berubah kepada gabungan lengkungan semibulatan terhimpit
dan permulaan bagi lengkungan lain pada frekuensi rendah. Tidak seperti plot yang asal,
graf impedan nyata, Z′ adalah bebas frekuensi
pada rejim frekuensi rendah. Selain itu, masa santaian, τ bagi
sampel KNN berganjak kepada frekuensi yang lebih rendah selepas
pengorientasi semula manakala pemalar piezoelektrik, d33 pada
arah (110) menokok secara signifikan daripada 5 kepada 35 pC/N.
Kata kunci: Domain; hukum Vegards; pemalar d33; pengutuban; saiz nano
REFERENCES
Cheng, X., Gou, Q., Wu, J., Wang, X.,
Zhang, B., Xiao, D., Zhu, J., Wang, X. & Lou, X. 2014. Dielectric, ferroelectric, and
piezoelectric properties in potassium sodium niobate ceramics with
rhombohedral-orthorhombic and orthorhombic-tetragonal phase boundaries. Ceramics
International 40(4): 5771-5779.
Denton, A.R. & Ashcroft, N.W. 1991. Vegard’s
law. Physical Review A 43(6): 3161-3164.
Dolhen, M., Mahajan, A., Pinho, R.,
Costa, E., Trolliard, G. & Vilarinho, P.M. 2015. Sodium potassium niobate (K0.5Na0.5NbO3,
KNN) thick films by electrophoretic deposition. Journal of RCS Advances 5:
4698-4706.
Guo, H., Zhang, S., Beckman, S.P. & Tan, X. 2013.
Microstructural origin for the piezoelectricity evolution in (K0.5Na0.5)NbO3- based lead-free ceramics. Journal of Applied Physics 114: 154102.
Hollenstein, E., Damjanovic, D. &
Setter, N. 2007. Temperature
stability of the piezoelectric properties of Li-modified KNN ceramics. Journal
of the European Ceramic Society 27(13- 15): 4093-4097.
Izzuddin, I., Jumali, M.H.H. & Zalita, Z. 2014. Structural and electrical evaluation of KNN ceramic. AIP
Conference Proceedings in Selangor, Malaysia from 9-11 April. 1614: 90.
Johscher, A.K. 1983. Dielectric
Relaxation in Solid. London: Chelsea Dielectric Press. pp 56-57.
Kim, J.S., Choi, B.C., Jeong, J.H., Chung, S.T., Cho, S.
& Kim, I.W. 2009. Low-frequency dielectric dispersion and impedance
spectroscopy of lead-free (Na0.5Bi0.5)TiO3 (NBT) ferroelectric ceramics. Journal of the Korean Physical Society 55(2):
879-883.
Li, G., Wu, X.Q., Ren, W., Shi, P., Chen, X.F. & Yao, X.
2012. Effects of excess amount of K and Na on properties of (K0.48Na0.52)NbO3 thin
films. Ceramics International 38(Supp. 1: S279-S281).
Liu, G.Z., Wang, C., Wang, C.C., Qiu,
J., He, M., Xing, J., Jin, K.J., Lu, H.B. & Yang, G.Z. 2008. Effects of interfacial polarization on the dielectric
properties of BiFeO3 thin film capacitors. Applied Physics
Letters 92(12): 122903.
Matsubara, M., Yamaguchi, T., Sakamoto, W., Kikuta, K.,
Yogo, T. & Hirano, S. 2005. Processing and piezoelectric properties of
lead-free (K,Na)(Nb,Ta)O3 ceramics. Journal of American Ceramic Society 88: 1190-1196.
McConnell, A.A., Aderson, J.S. & Rao, C.N.R. 1976. Raman spectra of niobium oxides. Spectrochimica Acta Part
A: Molecular Spectroscopy 32(5): 1067-1076.
Prasad, K., Bhagat, S., Priyanka, AmarNath, K., Chandra,
K.P. & Kulkarni, A.R. 2010. Electrical properties of BaY0.5Nb0.5O3 ceramic:
Impedance spectroscopy analysis. Physica B: Condensed Matter 405(17):
3564-3571.
Rubio-Marcos, F., Marchet, P.,
Merle-Méjean, T. & Fernandez, J.F. 2010a. Role of sintering time, crystalline
phases and symmetry in the piezoelectric properties of lead-free KNN-modified
ceramics. Materials Chemistry and Physics 123(1): 91-97.
Rubio-Marcos, F., Romero, J.J., Ochoa,
D.A., García, J.E., Perez, R. & Fernandezz, J.F. 2010b. Effects of poling process on KNN-modified
piezoceramic properties. J. Am. Ceram. Soc. 93(2): 318-321.
Rubio-Marcos, F., Romero, J.J.,
Martín-Gonzalez, M.S. & Fernández, J.F. 2010c. Effect of stoichiometry and milling processes in the
synthesis and the piezoelectric properties of modified KNN nanoparticles by solid state reaction. Journal of the European Ceramic
Society 30(13): 2763-2771.
Safari, A. & Akdogan, E.K. 2008. Piezoelectric and Acoustic Materials
for Transducer Applications. New York: Springer. p. 44.
Saeri, M.R., Barzegar, A. & Ahmadi Moghadam, H. 2011.
Investigation of nano particle additives on lithium doped KNN lead free
piezoelectric ceramics. Ceramics International 37(8): 3083-3087.
Saito, Y., Takao, H., Tani, T.,
Nonoyama, T., Takatori, K., Homma, T., Nagaya, T. & Nakamura, M. 2004. Lead-free piezoceramics. Nature 432: 84-87.
Schmidt, R., Eerenstein, W., Winiecki,
T., Morrison, F.D. & Midgley, P.A. 2007. Impedance spectroscopy of epitaxial multiferroic thin films. Physical Review B 75(24): 245111.
Tan, C.K.I., Yao, K., Goh, P.C. & Ma, J. 2012. 0.94(K0.5Na0.5) NbO3–0.06LiNbO3 piezoelectric ceramics prepared from the solid state reaction modified with
polyvinylpyrrolidone (PVP) of different molecular weights. Ceramics
International 38(3): 2513-2519.
Wei, N., Wang, J., Li, B., Huan, Y.
& Li, L. 2015. Improvement of the piezoelectric and
ferroelectric properties of (K, Na)0.5NbO3 ceramics via two-step calcination-milling route. Ceramics International 41(8):
9555-9559.
Wongsaenmai, S., Ananta, S. & Yimnirun,
R. 2012. Effect of Li addition on phase
formation behavior and electrical properties of (K0.5Na0.5)NbO3 lead free ceramics. Ceramics International 38(1): 147-152.
Zhao, Y., Zhao, Y., Huang, R., Liu, R.
& Zhou, H. 2012. Poling
field dependence of ferroelectric domains in tetragonal KNNLN ceramics. Ceramics
International 38: 6067-6070.
Zhengfa, L., Yongxiang, L. & Jiwei, Z. 2011. Grain growth and piezoelectric property of KNN-based lead-free
ceramics. Current Applied Physics 11(3, Supplement): S2-S13.
*Corresponding
author; email: hafizhj@ukm.edu.my
|