Sains Malaysiana 46(10)(2017): 1687–1691
http://dx.doi.org/10.17576/jsm-2017-4610-03
Nitric
Oxide Accelerates Mycorrhizal Effects on Plant Growth and Root
Development of Trifoliate Orange
(Nitrik Oksida Mempercepatkan
Kesan Mikoriza
ke atas Pertumbuhan
Pokok dan
Perkembangan Akar Oren Trifoliat)
LI TIAN1,2, NASRULLAH3,4, XIAO-YUN
HUANG1
& QIANG-SHENG WU1,2,5*
1College of Horticulture
and Gardening, Yangtze University, Jingzhou,
Hubei 434025
China
2Institute of Root
Biology, Yangtze University, Jingzhou,
Hubei 434025, China
3Department of Plant
Sciences, Quaid-I-Azam University, Islamabad, Pakistan
4Department of Biology
and Ecology, Nankai University, Tianjin,
China
5Department of Chemistry,
Faculty of Science, University of Hradec Kralove, Hradec Kralove,
Czech Republic
Received: 24 January
2017Accepted: 31 March 2017
ABSTRACT
Arbuscular mycorrhizal fungi
(AMF)
actively colonize plant roots and thus enhance plant growth through
different mechanisms. In the present study, trifoliate orange
(Poncirus trifoliata)
seedlings inoculated with Diversispora
versiformis were subjected to 0 and 0.2 mmol/L sodium nitroprusside (SNP,
a nitric oxide donor) treatments. After eight weeks, exogenous
SNP considerably
increased root mycorrhizal colonization by 25%, showing a positive
stimulating effect of NO on mycorrhizal formation. Mycorrhizal inoculation significantly
increased plant growth performance (height, stem diameter, leaf
number and shoot and root dry weight) and root traits (length,
projected area, surface area, volume and number of 2nd and 3rd
order lateral roots) than non-mycorrhizal treatment and NO (exogenous SNP treatment)
heavily strengthened the mycorrhizal effects. Moreover, NO and
mycorrhization induced more fine root
(0-0.5 cm) formation. There was an opposite changed trend in root
sucrose and leaf and root glucose contents by SNP in AMF versus
non-AMF seedlings. All these results implied that NO
plays important roles in mycorrhizal formation and
development and also accelerates mycorrhizal effects on plant
growth and root development of trifoliate orange.
Keywords: Arbuscular mycorrhizal
fungi; carbohydrate; citrus; nitric oxide; sodium nitroprusside
ABSTRAK
Kulat mikoriza arbuskula
(AMF)
mengkoloni akar
tumbuhan secara aktif dan seterusnya
menggalakkan pertumbuhan
pokok melalui mekanisme
berbeza. Dalam
kajian ini,
benih oren
trifoliat (Poncirus trifoliata) yang diinokulasi
dengan Diversispora versiformis telah diberikan rawatan 0 dan 0.2 mmol/L sodium nitropussida (SNP, penderma
nitrik oksida).
Selepas lapan minggu, SNP eksogenus didapati meningkatkan pengkolonian akar mikoriza sebanyak
25% dan ini
menunjukkan kesan rangsangan positif NO
terhadap pembentukan mikoriza. Penginokulasian mikoriza meningkatkan
prestasi pertumbuhan
pokok secara signifikan
(tinggi, diameter batang,
jumlah daun dan
berat akar
kering) dan ciri
akar (panjang,
luas unjuran, luas
permukaan, isi
padu, bilangan akar lateral peringkat ke-2 dan ke-3) berbanding rawatan tanpa mikoriza
serta NO (rawatan
SNP
eksogenus) mengukuhkan
lagi kesan
mikoriza. Di samping
itu, rawatan
NO
dan mikoriza mengaruh
lebih banyak
pembentukan akar halus (0-0.5 cm). Terdapat trend perubahan
bertentangan pada
kandungan sukrosa akar, daun serta
glukosa akar
oleh SNP dalam benih AMF berbanding
tanpa AMF. Keseluruhan
keputusan kajian
ini menunjukkan bahawa NO memainkan
peranan penting
dalam pembentukan dan perkembangan mikoriza, malah mempercepatkan kesan mikoriza ke atas
pertumbuhan pokok
dan perkembangan akar oren
trifoliat.
Kata kunci: Cendawan
mikoriza asbukula;
karbohidrat; nitrik oksida; sitrus; sodium nitroprusside
REFERENCES
Arenas-Huertero, F., Arroyo, A., Zhou, L., Sheen, J. & Leon,
P. 2000. Analysis of Arabidopsis glucose insensitive mutants,
gin5 and gin6, reveals a central role of the plant
hormone ABA in the regulation of plant vegetative development
by sugar. Genes and Development 14: 2085-2096.
Augin, O.,
Mansilla, J.P., Vilarioo,
A. & Sainz, M.J. 2004. Effects
of mycorrhizal inoculation on root morphology and nursery production
of three grapevine rootstocks. American Journal of Enology
and Viticulture 55: 108-111.
Bago, B., Pfeffer, P.E. & Shachar-Hill,
Y. 2000. Carbon metabolism and transport in arbuscular mycorrhizas. Plant
Physiology 124: 949-958.
Berta,
G., Fusconi, A., Trotta, A. & Scannerini,
S. 1990. Morphogenetic modifications induced by the mycorrhizal
fungus Glomus strain E3 in the root system of Allium
porrum L. New Phytologist
114: 207-215.
Calcagno, C., Novero, M., Genre, A., Bonfante, P. & Lnafranco, L.
2012. The exudate from an arbuscular mycorrhizal fungus induces nitric
oxide accumulation in Medicago
truncatula roots. Mycorrhiza 22: 259-269.
Correa-Aragunde, N., Graziano,
M., Chevalier, C. & Lamattina, L.
2006. Nitric
oxide modulates the expression of cell cycle regulatory genes
during lateral root formation in tomato. Journal of Experimental
Botany 57: 581-588.
Correa-Aragunde, N., Graziano,
M. & Lamattina, L. 2004. Nitric
oxide plays a central role in determining lateral root development
in tomato. Planta 218: 900-905.
Cueto, M.,
Hernández-Perera, O. & Martín, R.
1996. Presence of nitric oxide synthase activity in roots and nodules of
Lupinus albus.
FEBS Letters 398(2-3): 159-164.
Fernández-Marcos,
M., Sanz, L., Lewis, D.R., Muday,
G.K. & Lorenzo, O. 2011. Nitric oxide causes root apical
meristem defects and growth inhibition while reducing PIN-FORMED
1 (PIN1)-dependent acropetal auxin transport.
Proceedings of the National Academy of Sciences USA 108:
18506-18511.
Gadkar, V.,
David-Schwartz, R., Kunik, T. &
Kapulnik, Y. 2001. Arbuscular
mycorrhizal fungi colonization. Factors involved in host
recognition. Plant Physiology 127: 1493-1499.
Hu, M.Y., Li, H., Zhang, Y.J. & Liu, Q. 2009. Photosynthesis
and related physiological characteristics affected by exogenous
glucose in wheat seedlings under water stress. Acta
Agronomica Sinica
35: 724-732 (in Chinese with English abstract).
Leshem, Y.Y.
& Wills, R.B.H. 1998. Harnessing
senescence delaying gases nitric oxide and nitrous oxide: A novel
approach to postharvest control of fresh horticultural produce.
Biologia Plantarum
41: 110-117.
Meixner, C.,
Vegvari, G., Ludwig-Müller, J., Gagnon,
H., Steinkellner, S., Staeahelin, C.,
Gresshoff, P. & Vierheilig,
H. 2007. Two defined alleles of the LRR receptor kinase GmNARK in supernodu-lating
soybean govern differing autoregulation of mycorrhization.
Physiologia Plantarum
130: 261-270.
Pagnussat,
G.C., Simontacch, I.M., Puntarulo,
S. & Lamattina, L. 2002. Nitric oxide is required
for root organogenesis. Plant Physiology 129: 954-956.
Puppo, A., Pauly, N., Boscari, A., Mandon, K. & Brouquisse, R. 2013. Hydrogen peroxide
and nitric oxide: Key regulators of the legume-rhizobium and mycorrhizal
symbioses. Antioxidants and Redox Signaling 18: 2202-2219.
Sorgona,
A., Abenavoli, M.R., Gringeri,
P.G., Lupini, A. & Cacco,
G. 2007.
Root architecture plasticity of citrus rootstocks in response
to nitrate availability. Journal of Plant Nutrition 30:
1921-1932.
Wu, Q.S. 2010.
Arbuscular Mycorrhizal Research and Application of Horticultural
Plants. Beijing: Science Press (in Chinese).
Wu,
Q.S., Cao, M.Q., Zou, Y.N., Wu, C. & He, X.H. 2016. Mycorrhizal colonization
represents functional equilibrium on root morphology and carbon
distribution of trifoliate orange grown in a split-root system.
Scientia Horticulture 199: 95-102.
Wu,
Q.S., Srivastava, A.K. & Li, Y. 2015. Effect of mycorrhizal
symbiosis on growth behavior and carbohdyrate
metabolism of trifoliate orange under different substrate P levels.
Journal of Plant Growth Regulation 34: 495-508.
Wu, Q.S., Zou,
Y.N., He, X.H. & Luo, P. 2011. Arbuscular mycorrhizal fungi
can alter some root characters and physiological status in trifoliate
orange (Poncirus trifoliata L.
Raf.) seedlings. Plant Growth Regulation
65: 273-278.
Wu,
Q.S., Peng, Y.H., Zou, Y.N. & Liu, C.Y. 2010. Exogenous polyamines
affect mycorrhizal development of Glomus mosseae-colonized
citrus (Citrus tangerine) seedlings. ScienceAsia
36: 254-258.
Xiong, J., Lu, H., Lu,
K., Duan, Y.X., An,
L.Y. & Zhu, C. 2009. Cadmium decreases crown root number by
decreasing endogenous nitric oxide, which is in dispensable for
crown root primordia initiation in rice seedlings. Planta
230: 599- 610.
Yao, Q., Wang,
L.R., Zhu, H.H. & Chen, J.Z. 2009.
Effect of arbusuclar mycorrhizal fungal
inoculation on root system architecture of trifoliate orange (Poncirus trifoliata L.
Raf.) seedlings. Scientia
Horticulturae 121: 458-461.
*Corresponding author; email: wuqiangsh@163.com