Sains Malaysiana 46(10)(2017):
1757–1762
http://dx.doi.org/10.17576/jsm-2017-4610-12
The Comparative Evaluation
of Carbon Mineralization in Soils Contaminated and Uncontaminated
with Chromium
(Penilaian
Bandingan terhadap
Mineralisasi Karbon dalam Tanah yang Tercemar dan Tak Tercemar
dengan Kromium)
NACIDE
KIZILDAĞ1*,
HÜSNIYE
AKA
SAĞLIKER2
& CENGIZ DARICI3
1Central
Research Laboratory, Çukurova University,
01330, Adana, Turkey
2Faculty
of Science and Letters, Department of Biology, Osmaniye
Korkut Ata University, 80000 Osmaniye,
Turkey
3Faculty
of Science and Letters, Department of Biology, Çukurova
University, 01330, Adana,
Turkey
Received:
10 December 2016/Accepted: 14 March 2017
ABSTRACT
The environmental risk
of Chromium (Cr) pollution is pronounced in soils adjacent to
chromate industry. It is important to investigate the functioning
of soil microorganisms in ecosystems exposed to long-term contamination
by Cr. The aim of this study was to determine the effects of
Cr on carbon mineralization in soil. The study was carried out
in soils contaminated and uncontaminated with Cr near and away
from a Cr mine in three different districts (Bozluk,
Kızılyüksek and Yanıkçam)
of East Mediterranean Region, Turkey. Carbon mineralization
were determined in soils humidified 80% of field capacity at
28°C
over 30 days under the same laboratory conditions. These results
showed that carbon mineralization was greatly inhibited by the
presence of Cr in all contaminated sites. Based on these results,
microbial activity can use as an indicator for the Cr pollution
level in the soil ecosystems.
Keywords: Carbon mineralization; chromium; contamination; soil microorganisms;
toxic effect
ABSTRAK
Risiko alam sekitar
bagi pencemaran kromium (Cr) boleh dilihat pada tanah
bersebelahan dengan
industri kromat. Ia adalah penting untuk mengkaji kefungsian mikroorganisma tanah dalam ekosistem
yang sudah terdedah
kepada pencemaran jangka lama terhadap Cr. Tujuan kajian ini
adalah untuk
menentukan kesan Cr pada mineralisasi karbon dalam tanah.
Kajian
ini dijalankan pada tanah yang tercemar dan tidak
tercemar dengan
Cr yang berhampiran dan jauh dari lombong
Cr di tiga daerah
(Bozluk, Kızılyüksek dan Yanıkçam) di kawasan Mediterranean Timur, Turki. Pemineralan karbon ditentukan
dalam tanah
yang dilembapkan pada 80% had basah tanih pada
suhu 28°C selama 30 hari pada keadaan makmal
yang sama. Keputusan menunjukkan bahawa
mineralisasi karbon
sangat terencat dengan kehadiran Cr pada semua kawasan
yang tercemar. Berdasarkan hasil
ini, aktiviti
mikrob boleh digunakan
sebagai penunjuk
tahap pencemaran Cr dalam ekosistem tanah.
Kata kunci: Kesan
toksik; kromium;
mikroorganisma tanah; pemineralan karbon; pencemaran
REFERENCES
Aka, H. & Darıcı, C. 2004. Carbon and nitrogen mineralization of lead treated soils in the
eastern mediterranean region, Turkey.
Soil and Sediment Contamination 13(3): 255-265.
Allison, L.E. & Moodie, C.D. 1965. Carbonate. In Methods of Soil Analysis Part
2. Chemical and Microbiological
Properties. Monogr.
9. 2nd ed., edited by Black, C.A., Evans, D.D., Ensminger,
L.E., White, J.L. & Clark, F.E. Madison (WI): Agronomy Society
of America and Soil Science Society of America. pp. 1379-1396.
Al-Khashman, O.A. & Shawabkeh, R.A. 2006. Metals distribution in soils around the cement factory in southern
Jordan. Environmental Pollution 140: 387-394.
Baath, E. & Arnebrant, K. 1994. Growth rate and response of bacterial communities to pH in limed
and ash treated forest soils. Soil Biology and Biochemistry
26: 995-1001.
Bartlett, R. & James, B. 1978. Behavior
of chromium in soils: III. Oxidation.
Journal of Environmental Quality 8: 31-35.
Becquer, T., Quantin, C., Sicot,
M. & Boudot, J.P. 2003. Chromium availability in ultramafic soils from
New Caledonia. Science of the Total Environment 301:
251-261.
Benlot, C. 1977. Recherches sur
les activites biochimiques
dans les successions de sols derives de cendres volcaniques sous climat tropical humide (Zaire- Indonesie). ENS Lab., De Zoologie,
Paris. pp. 73-76.
Brookes, P.C. 1995. The use of microbial parameters
in monitoring soil pollution by heavy metals. Biology
and Fertility of Soils 19: 269-279.
Bouyoucos, G.S. 1951. A recalibration of the hydrometer for making mechanical analysis of
soil. Agronomy Journal 43: 434-438.
Boteva, S., Radeva, G., Traykov,
I. & Kenarova, A. 2016. Effects of long-term radionuclide and heavy metal
contamination on the activity of microbial communities, inhabiting
uranium mining impacted soils. Environmental Science
and Pollution Research 23: 5644-5653.
Chibuike, G.U. & Obiora, S.C. 2014. Heavy metal polluted soils: Effect on plants and bioremediation
methods. Applied and Environmental Soil Science 5: 1-12.
Ciarkowska, K., Gargiulo, L. & Mele, G. 2016. Natural
restoration of soils on mine heaps with similar technogenic
parent material: A case study of long-term soil evolution in
Silesian-Krakow upland Poland. Geoderma
261: 141-150.
Dai, J., Becquer, T., Rouiller, H., Reversat, G., Bernhard-
Reversat, F. & Lavelle, P. 2004.
Influence of heavy metals on C and N mineralization and microbial
biomass in Zn-, Pb-, Cu- , and Cd-contaminated
soils. Applied Soil Ecology 25: 99-109.
Demiralay, İ. 1993. Toprak fiziksel analizleri. Atatürk
Üniversitesi Ziraat
Fakültesi Yayınları 143:
6-51.
Duchaufour, P. 1970. Precis de Pedologie. Masson et Cie.
Dumestre, A., Sauvé, S., McBride, M.B., Baveye,
P. & Berthelin, J. 1999 Copper
speciation and microbial activity in long-term contaminated
soils. Archives of Environmental Contamination and Toxicology 36:
124-131.
Friedlová, M. 2010. The influence of heavy metals on soil biological and chemical properties.
Soil and Water Research 5: 21-27.
Frouz, J., Elhottová, D., Pižl, V., Tajovský, K., Šourková, M., Picek, T. & Malý, S. 2007. The
effect of litter quality and soil faunal composition on organic
matter dynamics in post-mining soil: A laboratory study. Applied
Soil Ecology 37: 72-80.
Huang,
S.H., Peng, B., Yang, Z.H., Chai, L.Y. & Zhou, L.C. 2009. Chromium accumulation, microorganism population and enzyme
activities in soils around chromium-containing slag heap of
steel alloy factory. Transactions of Nonferrous Metals Society
of China 19: 241-248.
Huot,
H., Simonnot, M.O., Marion, P.H.,
Yvon, J., De Donato, P.H. & Morel,
J.L. 2013. Characteristics
and potential pedogenetic processes
of a Technosol developing on iron industry deposits. Journal of Soils and Sediments 13: 555- 568.
Jackson,
M.L. 1958. Soil Chemical Analysis.
Eaglewood Cliffs: Prentice-Hall, Inc.
James,
B.R. 1996. The challenge of remediating chromium-contaminant
soil. Environmental Science and Technology 30:
248-257.
Kot,
A. & Namiesnèik, J. 2000. The role of speciation in analytical chemistry. Trends in
Analytical Chemistry 19: 69-79.
Marschner,
B. & Kalbitz, K. 2003. Control of bioavailability and biodegradation of dissolved organic
matter in soils. Geoderma
113: 211-235.
Matos,
A.T., Fontes, M.P.F., Costa, L.M.
& Martinez, M.A. 2001. Mobility of heavy metals as related to soil chemical
and mineralogical characteristics of Brazilian soils. Environmental
Pollution 111: 429-435.
Megharaj,
M., Avudainayagam, S. & Naidu,
R. 2003. Toxicity
of hexavalent chromium and its reduction by bacteria isolated
from soil contaminated with tannery waste. Current Microbiology
47: 51-54.
Mukherjee,
K., Saha, R., Ghosh, A., Gosh, S.K.,
Maji, P.K. & Saha, B. 2014. Surfactant
assisted bioremediation of hexavalent chromium by use of an
aqueous extract of sugarcane bagasse. Research on Chemical
Intermediates 40: 1727-1734.
Nwuche,
C.O. & Ugoji, E.O. 2008. Effects of heavy metal pollution on the soil microbial activity.
International Journal of Environmental Science and Technology
5: 409-414.
Obbard, P.
2001. Ecotoxicological assessment
of heavy metals in sewage sludge amended soils. Applied
Geochemistry 16: 1405-1411.
Owlad,
M., Aroua, M.K. & Daud,
W.M.A.W. 2010. Hexavalent chromium
adsorption on impregnated palm shell activated carbon with polyethyleneimine.
Biosource Technology 101:
5098-5103.
Palmer,
C.D. & Wittbrodt, P.R. 1991. Processes affecting the remediation of chromium-contaminated sites.
Environmental Health Perspectives 92: 25-40.
Schaefer,
R. 1967. Caracteres et
evolution des activites microbiennes
dans une
chaine de sols hydromorphes mesotrophiques de la plaine d’alsace première partie: Cadre
géographique et milieu édaphique
(Doctoral dissertation) (Unpublished).
Schulin, R.
2007. Heavy metal contamination along a soil transect in the
vicinity of the iron smelter of Kremikovtzi.
Geoderma 140: 52-61.
Viti,
C. 2006. Response of microbial communities
to different doses of chromate in soil microcosms. Applied
Soil Ecology 34: 125-139.
Wang,
J., Lu, Y. & Shen, G. 2007. Combined effects
of cadmium and butachlor on soil enzyme
activities and microbial community structure. Environmental
Geology 51: 1221-1228.
Zayed,
A.M. & Terry, N. 2003. Chromium in the environment: Factors affecting
biological remediation. Plant and Soil 249: 139-156.
*Corresponding author; email: nkizildag@cu.edu.tr