Sains Malaysiana 46(10)(2017): 1797–1805

http://dx.doi.org/10.17576/jsm-2017-4610-17

 

Kesan Penambahan Limonena terhadap Mikroemulsi Asid oleik/Cremophor rh 40/Transcutol/Air

(Effect of Limonene on the Oleic acid/Cremophor rh 40/Transcutol/Water Microemulsion)

 

ZAINUDDIN, N1., AHMAD, I1,2., ABDUL RAHMAN, I.3 & RAMLI, S.1,2*

 

1Pusat Pengajian Sains Kimia dan Teknologi Makanan, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan,Malaysia

 

2Pusat Penyelidikan Polimer (PORCE), Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

3Pusat Pengajian Fizik Gunaan, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

Received: 24 January 2017/Accepted: 10 August 2017

 

ABSTRAK

Gambar rajah fasa pseudo-ternari sistem mikroemulsi asid oleik/Cremophor rh 40/Transcutol/Air diperoleh melalui pentitratan air pada nisbah surfaktan:kosurfaktan (Km) yang berbeza. Nisbah optimum bagi surfaktan/kosurfaktan adalah Km=2:1. Kesan penambahan limonena sebagai fasa minyak campuran terhadap sistem mikroemulsi diuji pada nisbah limonena:asid oleik (1:1, 2:1 dan 3:1). Penambahan limonena berupaya menghasilkan rantau mikroemulsi yang lebih besar sehingga 70%-80 % bt. air bagi kesemua nisbah limonena:asid oleik. Nisbah limonena:asid oleik (1:1) memberikan rantau mikroemulsi yang paling luas pada nisbah minyak:surfaktan/kosurfaktan (Minyak:S/KoS=1:9). Sifat isotropik mikroemulsi ditentukan dengan menggunakan mikroskopi cahaya polarasi. Mikroemulsi dibangunkan pada nisbah Km=2:1 dan Minyak:S/KoS (1:9) serta limonena:asid oleik (1:1). Kestabilan dan saiz partikel bagi sistem dikaji dan penambahan limonena didapati tidak merubah sifat serta mikro-struktur sistem mikroemulsi. Kajian konduktiviti elektrik dan kelikatan sistem menunjukkan pembentukan mikroemulsi jenis air-dalam-minyak (10% dan 20 % bt. air) dan dwiselanjar (30%-50 % bt. air). Kesemua sistem mempunyai potensi sebagai sistem penghantar bahan aktif dan menunjukkan kestabilan yang baik pada suhu 4, 25 dan 37°C dalam tempoh lebih daripada 6 bulan.

 

Kata kunci: Fasa mikroemulsi; gambar rajah fasa; limonena; mikroemuls; penghantar bahan aktif

 

ABSTRACT

The pseudo-ternary phase diagram of oleic acid/cremophor rh 40/transcutol/water was prepared along the water dilution line at different ratio of surfactant to cosurfactant (Km). The optimum ratio of surfactant to surfactant was Km=2:1. The effect of addition limonene as a mixed oils phase on the system were done with the ratio of oleic acid to limonene at 1:1, 1:2 and 1:3. Addition of limonene is able to form stable microemulsions up to 70-80 wt. % water content for all ratios of oleic acid to limonene. The ratio of limonene:oleic acid (1:1) resulted on the largest microemulsion region was obtained at the ratio of oil:surfactant/cosurfactant (Oil:S/CoS=1:9). The isotropic properties of microemulsion phases were confirmed by polarized light microscopy. Both systems were prepared at Km=2:1 and 1:9 (oil:S/CoS) as well as 1:1 (limonene:oleic acid). The stability and particle size study was performed for both systems and its show that the addition of limonene does not change the properties and microstructure of the system. Electrical conductivity and viscosity study of the systems reveals that transformation from water-in-oil microemulsion (10% and 20 wt. % water) and bicontinuous microemulsion (30% to 50 wt. % water). All microemulsions prepared may have potentials as a drug delivery system and show high stability for over 6 months at 4, 25 and 37°C.

 

Keywords: Drug delivery; limonene; microemulsion; microemulsion phase; phase diagram

REFERENCES

Agubata, C.O., Nzekwe, I.T., Obitte, N.C., Ugwu, C.E., Attama, A.A. & Onunkwo, G. C. 2014. Effect of oil, surfactant and co-surfactant concentrations on the phase behavior, physicochemical properties and drug release from self-emulsifying drug delivery systems. Journal of Drug Discovery, Development and Delivery 1(1): 1-7.

Al Abood, R.M., Talegaonkar, S., Tariq, M. & Ahmad, F.J. 2013. Microemulsion as a tool for the transdermal delivery of ondansetron for the treatment of chemotherapy induced nausea and vomiting. Colloids and Surfaces B: Biointerfaces 101: 143-151.

Anjana, D., Nair, K.A. & Somashekara, N. 2012. Development of curcumin based ophthalmic formulation. American Journal of Infectious Diseases 8(1): 41-49.

Basheer, H.S., Mohamed, I.N. & Mowafaq, M.G. 2013. Characterization of microemulsions prepared using isopropyl palmitate with various surfactants and cosurfactants. Tropical Journal of Pharmaceutical Research 12(3): 305- 310.

Fanun, M. 2012. Microemulsions as delivery systems. Current Opinion in Colloid & Interface Science 17: 306-313.

Fanun, M. 2010. Microemulsions with nonionic surfactants and mint oil. The Open Colloid Science Journal 3: 9-14.

Fanun, M. 2008. Microemulsions: Properties and applications. Boca Raton: CRC Press. pp. 101-108.

Fanun, M. 2007. Phase behavior, structure evolution and diclofenac solubilization studies on mixed nonionic surfactants microemulsions. In Non-Ionic Surfactants, edited by Wendt, P.L. & Hoysted, D.S. New York: Nova Science Publishers. pp. 245-284.

Grampurohit, N.D., Ravikumar, P. & Mallya, R. 2011. Microemulsion for topical use-a review. Indian Journal of Pharmaceutical Education and Research 45(1): 100-107.

Idress, M.A., Rahman, N.U., Ahmad, S., Ali, M.Y. & Ahmad, I. 2011. Enhance transdermal delivery of flurbiprofen via microemulsions: Effects of different types of surfactants and cosurfactants. DARU 19(6): 433-438.

Liu, C.H., Chang, F.Y. & Hung, D.K. 2011. Terpene microemulsions for transdermal curcumin delivery: Effects of terpenes and cosurfactants. Colloids and Surfaces B: Biointrefaces 82: 63-70.

Maura, P., Bragagni, M., Menini, N., Cirri, M. & Maestrelli, F. 2014. Development of liposomal and microemulsion formulations for transdermal delivery of clonazepam: Effect of randomly methylated β-cyclodextrin. International Journal of Pharmaceutics 475(1-2): 306-314.

Metha, S.K. & Kaur, G. 2011. Microemulsions: Thermodynamic and dynamic properties. In Thermodynamics, edited by Mizutani Tadashi. London: InTech. pp. 381-406.

Moulik, S.P. & Rakshit, A.K. 2006. Physicochemistry and applications of microemulsions. Journal of Surface Science and Technology 22(3-4): 159-186.

Patel, R.B., Patel, M.R., Bhatt, K.K. & Patel, B.G. 2013. Formulation and evaluation of microemulsions-based drug delivery system for intranasal administration of olanzapine. International Journal of Biomedical and Pharmaceutical Sciences 7(1): 20-27.

Paul, B.K. & Moulik, S.P. 2000. The viscosity behaviours of microemulsions: An overview. PINSA 66(5): 499-519.

Sarkar, K.B. & Hardenia, S.S. 2011. Microemulsion drug delivery system: For oral bioavailability enhancement of glipizide. Journal of Advanced Pharmacy Education & Research 1(4): 195-200.

Shahzadi, I., Masood, M.I., Chowdhary, F., Anjum, A.A., Nawaz, M.A., Maqsood, I. & Zaman, M.Q. 2014. Microemulsion formulation for topical delivery of miconazole nitrate. International Journal of Pharmaceutical Sciences Review and Research 24(2): 30-36.

Silva, A.E., Barrat, G., Cheron, M. & Egito, E.S.T. 2013. Development of oil-in-water microemulsions for the oral delivery of amphotericin B. International Journal of Pharmaceutics 454(2): 641-648.

Singh, A. & Vijaykumar, M. 2013. The effect of penetration enhancers on the permeation of sulfonyl urea derivative. Der Pharmacia Lettre 5(6): 171-175.

Singla, V., Saini, S., Singh, G., Rana, A.C. & Joshi, B. 2011. Penetration enhnacers: A novel strategy for enhancing transdermal drug delivery. International Research Journal of Pharmacy 2(12): 32-36.

Sintov, A.C. 2015. Transdermal delivery of curcumin via microemulsion. International Journal of Pharmaceutics 481: 97-103.

Som, I., Bhatia, K. & Yasir, M. 2012. Status of surfactants as penetration enhancers in transdermal drug delivery. Journal of Pharmacy and Bioallied Sciences 4(1): 2-9.

Sripriya, R., Raja, M.K., Santhosh, G., Chandrasekhara, N. & Noel, M. 2007. The effect of structure of oil phase, surfactant and co-surfactant on the physicochemical and electrochemical properties of bicontinuous microemulsion. Journal of Colloid and Interface Science 314: 712-717.

Suria, R., Safiah, M.J., Muhd Asri, A.S., Norhidayu, Z. & Irman, A.R. 2015. Formulation and physical characterization of microemulsion based carboxymethyl cellulose as vitamin c carrier. Malaysian Journal of Analytical Sciences 19(1): 275-283.

Suria, R., Benjamin, P.R. & Ian, R.G. 2009. Formulation and physical characterization of microemulsions containing isotretinoin. International Conference on Biomedical and Pharmaceutical Engineering. pp. 1-7.

Syed, H.K. & Peh, K.K. 2014. Identification of phases of various oil, surfactant/co-surfactants and water system by ternary phase diagram. Acta Poloniac Pharmaceutica-Drug Research 71(2): 301-309.

Talegaonkar, S., Adnan, A., Farhan, J.A., Roop, K.K., Shadab, A. & Zeenat, I.K. 2008. Microemulsions: A novel approach to enhanced drug delivery. Recent Patents Drug Delivery & Formulation 2(3): 238-257.

Williams, A.C. & Barry, B.W. 2004. Penetration enhancers. Advanced Drug Delivery Reviews 56(5): 603-618.

 

*Corresponding author; email: su_ramli@ukm.edu.my

 

 

 

 

 

 

previous