Sains Malaysiana 46(10)(2017):
1797–1805
http://dx.doi.org/10.17576/jsm-2017-4610-17
Kesan Penambahan
Limonena terhadap
Mikroemulsi Asid oleik/Cremophor rh 40/Transcutol/Air
(Effect
of Limonene on the Oleic acid/Cremophor
rh 40/Transcutol/Water Microemulsion)
ZAINUDDIN,
N1., AHMAD,
I1,2.,
ABDUL
RAHMAN,
I.3
& RAMLI, S.1,2*
1Pusat Pengajian
Sains Kimia dan
Teknologi Makanan, Fakulti Sains dan
Teknologi, Universiti
Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan,Malaysia
2Pusat Penyelidikan
Polimer (PORCE), Fakulti
Sains dan
Teknologi, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
3Pusat Pengajian
Fizik Gunaan,
Fakulti Sains dan
Teknologi, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
Received:
24 January 2017/Accepted: 10 August 2017
ABSTRAK
Gambar rajah fasa pseudo-ternari
sistem mikroemulsi
asid oleik/Cremophor
rh 40/Transcutol/Air
diperoleh melalui pentitratan air pada nisbah surfaktan:kosurfaktan
(Km) yang berbeza. Nisbah
optimum bagi surfaktan/kosurfaktan adalah Km=2:1. Kesan penambahan limonena sebagai fasa minyak campuran
terhadap sistem
mikroemulsi diuji pada nisbah limonena:asid oleik (1:1, 2:1 dan 3:1). Penambahan limonena berupaya menghasilkan rantau mikroemulsi yang lebih besar sehingga 70%-80 % bt. air bagi kesemua
nisbah limonena:asid
oleik. Nisbah
limonena:asid oleik
(1:1) memberikan rantau
mikroemulsi yang paling luas pada nisbah minyak:surfaktan/kosurfaktan (Minyak:S/KoS=1:9). Sifat isotropik mikroemulsi
ditentukan dengan
menggunakan mikroskopi cahaya polarasi. Mikroemulsi dibangunkan pada nisbah Km=2:1 dan Minyak:S/KoS (1:9) serta limonena:asid oleik (1:1). Kestabilan dan saiz partikel
bagi sistem
dikaji dan penambahan
limonena didapati
tidak merubah sifat
serta mikro-struktur
sistem mikroemulsi. Kajian konduktiviti elektrik dan kelikatan
sistem menunjukkan
pembentukan mikroemulsi jenis air-dalam-minyak (10% dan 20 % bt. air) dan
dwiselanjar (30%-50 % bt.
air). Kesemua sistem
mempunyai potensi sebagai sistem penghantar bahan aktif dan menunjukkan
kestabilan yang baik
pada suhu 4, 25 dan 37°C dalam tempoh lebih daripada
6 bulan.
Kata kunci: Fasa mikroemulsi;
gambar rajah fasa;
limonena; mikroemuls; penghantar bahan aktif
ABSTRACT
The pseudo-ternary phase
diagram of oleic acid/cremophor rh 40/transcutol/water was prepared
along the water dilution line at different ratio of surfactant
to cosurfactant (Km). The optimum ratio of surfactant to surfactant
was Km=2:1. The effect of addition limonene
as a mixed oils phase on the system were done with the
ratio of oleic acid to limonene at 1:1, 1:2 and 1:3. Addition
of limonene is able to form stable microemulsions up to 70-80 wt. % water content for all ratios
of oleic acid to limonene. The ratio of limonene:oleic acid (1:1) resulted on the largest microemulsion region was obtained at the ratio of oil:surfactant/cosurfactant (Oil:S/CoS=1:9). The isotropic properties
of microemulsion phases were confirmed
by polarized light microscopy. Both systems were prepared at
Km=2:1 and 1:9 (oil:S/CoS)
as well as 1:1 (limonene:oleic acid).
The stability and particle size study was performed for both
systems and its show that the addition of limonene does not
change the properties and microstructure of the system. Electrical
conductivity and viscosity study of the systems reveals that
transformation from water-in-oil microemulsion
(10% and 20 wt. % water) and bicontinuous
microemulsion (30% to 50 wt. % water). All microemulsions prepared may have potentials as a drug delivery
system and show high stability for over 6 months at 4, 25 and
37°C.
Keywords: Drug delivery; limonene; microemulsion;
microemulsion phase; phase diagram
REFERENCES
Agubata, C.O., Nzekwe, I.T., Obitte, N.C., Ugwu, C.E., Attama, A.A. & Onunkwo, G. C.
2014. Effect of oil, surfactant and co-surfactant concentrations
on the phase behavior, physicochemical properties and drug release
from self-emulsifying drug delivery systems. Journal
of Drug Discovery, Development and Delivery 1(1): 1-7.
Al Abood, R.M., Talegaonkar,
S., Tariq, M. & Ahmad, F.J. 2013. Microemulsion as a tool for the transdermal delivery of ondansetron
for the treatment of chemotherapy induced nausea and vomiting.
Colloids and Surfaces B: Biointerfaces
101: 143-151.
Anjana, D., Nair, K.A. & Somashekara, N.
2012. Development of curcumin based ophthalmic formulation. American
Journal of Infectious Diseases 8(1): 41-49.
Basheer, H.S., Mohamed, I.N. & Mowafaq,
M.G. 2013. Characterization of microemulsions
prepared using isopropyl palmitate with various surfactants
and cosurfactants. Tropical Journal of Pharmaceutical Research
12(3): 305- 310.
Fanun, M. 2012. Microemulsions
as delivery systems. Current Opinion in Colloid &
Interface Science 17: 306-313.
Fanun, M. 2010. Microemulsions
with nonionic surfactants and mint oil. The Open Colloid
Science Journal 3: 9-14.
Fanun, M. 2008. Microemulsions: Properties and applications.
Boca Raton: CRC Press. pp. 101-108.
Fanun, M. 2007. Phase behavior,
structure evolution and diclofenac solubilization
studies on mixed nonionic surfactants microemulsions.
In Non-Ionic Surfactants, edited by Wendt, P.L. &
Hoysted, D.S. New York: Nova Science
Publishers. pp. 245-284.
Grampurohit, N.D., Ravikumar, P. & Mallya, R. 2011. Microemulsion for
topical use-a review. Indian Journal of Pharmaceutical
Education and Research 45(1): 100-107.
Idress, M.A., Rahman, N.U., Ahmad,
S., Ali, M.Y. & Ahmad, I. 2011. Enhance transdermal delivery
of flurbiprofen via microemulsions:
Effects of different types of surfactants and cosurfactants.
DARU 19(6): 433-438.
Liu, C.H., Chang, F.Y. & Hung, D.K. 2011. Terpene microemulsions for transdermal
curcumin delivery: Effects of terpenes and cosurfactants.
Colloids and Surfaces B: Biointrefaces
82: 63-70.
Maura, P., Bragagni, M., Menini, N., Cirri, M. & Maestrelli,
F. 2014. Development of liposomal and microemulsion formulations for transdermal delivery of clonazepam:
Effect of randomly methylated β-cyclodextrin.
International Journal of Pharmaceutics 475(1-2): 306-314.
Metha, S.K. & Kaur, G. 2011. Microemulsions: Thermodynamic and dynamic properties. In Thermodynamics, edited by Mizutani
Tadashi. London: InTech. pp.
381-406.
Moulik, S.P. & Rakshit, A.K. 2006. Physicochemistry and applications of microemulsions.
Journal of Surface Science and Technology 22(3-4): 159-186.
Patel, R.B., Patel, M.R., Bhatt, K.K. & Patel, B.G. 2013. Formulation and evaluation of microemulsions-based drug delivery system for intranasal administration
of olanzapine. International Journal of Biomedical
and Pharmaceutical Sciences 7(1): 20-27.
Paul, B.K. & Moulik, S.P. 2000. The viscosity behaviours of microemulsions: An overview. PINSA 66(5): 499-519.
Sarkar, K.B. & Hardenia, S.S. 2011. Microemulsion drug delivery system: For
oral bioavailability enhancement of glipizide. Journal of
Advanced Pharmacy Education & Research 1(4): 195-200.
Shahzadi, I., Masood, M.I., Chowdhary, F., Anjum, A.A., Nawaz, M.A., Maqsood,
I. & Zaman, M.Q. 2014. Microemulsion formulation for topical
delivery of miconazole nitrate. International Journal
of Pharmaceutical Sciences Review and Research 24(2): 30-36.
Silva, A.E., Barrat, G., Cheron, M. & Egito, E.S.T. 2013. Development of oil-in-water microemulsions
for the oral delivery of amphotericin B. International Journal
of Pharmaceutics 454(2): 641-648.
Singh, A. & Vijaykumar, M. 2013. The effect of penetration enhancers on the permeation
of sulfonyl urea derivative. Der Pharmacia Lettre 5(6): 171-175.
Singla, V., Saini, S., Singh, G., Rana, A.C. & Joshi, B. 2011. Penetration enhnacers: A novel strategy
for enhancing transdermal drug delivery. International Research
Journal of Pharmacy 2(12): 32-36.
Sintov, A.C. 2015. Transdermal
delivery of curcumin via microemulsion.
International Journal of Pharmaceutics 481: 97-103.
Som, I., Bhatia, K. & Yasir, M. 2012. Status of surfactants as penetration enhancers
in transdermal drug delivery. Journal of Pharmacy
and Bioallied Sciences 4(1): 2-9.
Sripriya, R., Raja, M.K., Santhosh, G., Chandrasekhara,
N. & Noel, M. 2007. The effect
of structure of oil phase, surfactant and co-surfactant on the
physicochemical and electrochemical properties of bicontinuous
microemulsion. Journal of
Colloid and Interface Science 314: 712-717.
Suria, R., Safiah, M.J., Muhd
Asri, A.S., Norhidayu,
Z. & Irman, A.R. 2015. Formulation and physical characterization of microemulsion
based carboxymethyl cellulose as vitamin
c carrier. Malaysian Journal of Analytical Sciences 19(1):
275-283.
Suria, R., Benjamin, P.R. & Ian, R.G. 2009. Formulation and physical characterization of microemulsions containing isotretinoin. International Conference on Biomedical and Pharmaceutical Engineering.
pp. 1-7.
Syed, H.K. & Peh, K.K. 2014. Identification of phases of various oil, surfactant/co-surfactants
and water system by ternary phase diagram. Acta Poloniac Pharmaceutica-Drug Research 71(2): 301-309.
Talegaonkar, S., Adnan, A., Farhan, J.A., Roop, K.K.,
Shadab, A. & Zeenat,
I.K. 2008. Microemulsions:
A novel approach to enhanced drug delivery. Recent Patents
Drug Delivery & Formulation 2(3): 238-257.
Williams, A.C. & Barry, B.W. 2004. Penetration enhancers. Advanced Drug
Delivery Reviews 56(5): 603-618.
*Corresponding author; email: su_ramli@ukm.edu.my