Sains Malaysiana 46(10)(2017):
1831–1838
http://dx.doi.org/10.17576/jsm-2017-4610-21
Overcoming the Challenge of Transduction of Human T-cells with Chimeric
Antigen Receptor (CAR) Specific for ERBB2 Antigen
(Mengatasi Cabaran
Transduksi Sel-T
Manusia dengan Reseptor Kimera Antigen (CAR) Khusus kepada Antigen ERBB2)
RUSHENI
MUNISVARADASS1,
SHIRLEY
DING SUET LEE1, AVIN
EE
HWAN
KOH1,
SURESH
KUMAR3,4,
LIM
MOON
NIAN6,
SHALINI
VELLASAMY7,
SYAHRIL
ABDULLAH1,4,5,
ABDULLAH
A.
ALARFAJ8
& MOK POOI LING1,2,4*
1Department of Biomedical
Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang,
Selangor Darul Ehsan, Malaysia
2Department
of Clinical Laboratory Sciences, College of Applied Medical
Sciences, Aljouf University, Sakaka, 72442 Aljouf Province, Kingdom of Saudi Arabia
3Department
of Medical Microbiology and Parasitology, Faculty of Medicine
and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang,
Selangor Darul Ehsan, Malaysia
4Genetics
and Regenerative Medicine Research Centre, Universiti
Putra Malaysia, 43400 UPM Serdang,
Selangor Darul Ehsan, Malaysia
5Institute
of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang,
Selangor Darul Ehsan, Malaysia
6Stem Cell
Laboratory, Haematology Unit, Cancer
Research Centre, Institute for Medical Research, Jalan
Pahang, 50588 Kuala Lumpur, Federal Territory, Malaysia
7Department of Biomedical
Science, Universiti Malaya, 50603
Kuala Lumpur, Federal Territory, Malaysia
8Department of Botany
and Microbiology, King Saud University, Riyadh 11451, Saudi
Arabia
Received: 26 November
2016/Accepted: 6 March 2017
ABSTRACT
Breast cancer is one
of the most common malignancies among woman. Decades of scientific
study have linked the overexpression of ERBB2 antigen to aggressive tumors.
To target aggressive breast cancer, chimeric antigen receptor
(CAR)
technology can be utilized. For this, human T-cells are transduced
with a gene sequence encoding a CAR that is specific for tumor-associated
antigens (TAAs). These genetically-engineered CAR
transduced T-cells (CAR-T cells) are able to target the tumor antigen without
the need for major histocompatibility complex (MHC)
recognition, rendering it a potentially universal immunotherapeutic
option. However, efficient transduction of therapeutic gene
into human T-cells and further cell expansion are challenging.
In this study, we reported a successful optimization of a transduction
protocol using spinoculation on CD3+ T-cells with different concentrations of
lentiviral plasmid encoding the CAR gene. CD3+T-cells
were isolated from the peripheral blood mononuclear cells (PBMCs).
The constructed CAR gene was inserted into a lentiviral
plasmid containing the green fluorescent protein (GFP)
tag and lentiviral particles were produced. These lentiviral
particles were used to transduce activated T-cells by spinoculation.
T-cells were activated using Dynabead-conjugated
CD3/CD28
human T-cell activator and interleukin-2 (IL-2)
before transduction. CD3+ T-cells were selected
and GFP expression, which indicated transduction, was observed.
Future studies will focus on in
vitro and in vivo models to determine the efficiency
of CAR-T
cells in specifically targeting ERBB2-expressing cells.
Keywords: Breast cancer;
CD3+ T-cells; chimeric antigen receptor (CAR);
immunotherapy
ABSTRAK
Kanser payudara adalah
salah satu
kanser yang kerap melanda kaum wanita. Kajian saintifik telah
mengaitkan lebihan
ekspresi antigen ERBB2 pada
barah kanser
yang lebih agresif. Untuk menangani masalah ini, teknologi reseptor kimera antigen (CAR)
boleh digunakan.
Untuk ini, sel T manusia
ditransduksi dengan
urutan gen pengekodan CAR
yang khusus untuk
antigen berkaitan-barah (TAA). Sel T yang ditransduksi dengan CAR (CAR-T)
secara genetik
dapat mensasar kepada antigen kanser tanpa memerlukan pengenalan kompleks kehistoserasian utama (MHC),
menjadikan ia
pilihan terapi
imun berpotensi umum. Walau bagaimanapun, transduksi
gen terapeutik ke
dalam sel T manusia
dan pengembangan
sel selanjutnya adalah mencabar. Dalam kajian ini,
kami berjaya melaporkan
pengoptimuman protokol transduksi menggunakan spinokulasi sel T CD3+
dengan kepekatan
plasmid lentiviral pengekodan gen
CAR yang
berbeza. Sel T CD3+ telah
diasingkan daripada sel-sel mononuklear darah periferi (PBMCs).
Gen CAR yang dibina dimasukkan ke dalam
plasmid lentiviral mengandungi protein
pendarfluor hijau (GFP)
dan zarah
lentiviral penuh dihasilkan. Zarah lentiviral
digunakan untuk
transduksi spinokulasi T-sel yang telah diaktifkan. Sel T diaktifkan menggunakan
CD3
berkonjugasi Dynabead/pengaktif manusia sel T CD28 dan interleukin-2
(IL-2) sebelum
transduksi. Kejayaan transduksi
dilaporkan apabila
ekspresi GFP diperhatikan
di dalam sel
T CD3+.
Kajian masa depan
akan memberi
tumpuan kepada
model in vitro dan in vivo untuk menentukan kecekapan sel CAR-T
dalam mensasarkan
dan membunuh sel
kanser yang mempunyai
ekpresi ERBB2 berlebihan.
Kata kunci: Kanser
payudara; reseptor
kimera antigen (CAR); sel CD3+ T; terapi imuno
REFERENCES
Ahmadi, M., King, J., Xue, S., Voisine, C., Holler, A. & Wright, G. 2011. CD3 limits
the efficacy of TCR gene therapy in vivo. Blood 118(13):
3528-3537.
Bollard, C., Rooney, C. & Heslop, H.
2012. T-cell therapy in the treatment of post-transplant
lymphoproliferative disease. Nature Reviews Clinical
Oncology 9(9): 510-519.
Carey, L. 2011. Directed therapy of subtypes of
triple-negative breast cancer. The Oncologist 16:
71-78.
Chmielewski, M., Hombach, A. & Abken, H. 2013. Antigen-specific
T-cell activation independently of the MHC: Chimeric antigen
receptor-redirected T cells. Front Immunology 4: 371.
Cribbs, A., Kennedy, A., Gregory, B. & Brennan, F. 2013. Simplified production and concentration of lentiviral
vectors to achieve high transduction in primary human T-cells.
BMC Biotechnology 13: 98.
De Saint Basile, G., Ménasché,
G. & Fischer, A. 2010. Molecular
mechanisms of biogenesis and exocytosis of cytotoxic granules.
Nature Reviews in Immunology 10: 568-579.
Dieci, M., Griguolo, G., Miglietta,
F. & Guarneri, V. 2016. The immune system and
hormone-receptor positive breast cancer: Is it really a dead
end? Cancer Treatment Reviews 46: 9-19.
Elsahwi, K.S. & Santin, A.D. 2011. ERBB2 overexpression in uterine serous
cancer: A molecular target for trastuzumab
therapy. Obstetrics and Gynecology International 2011:
128295.
Eroles, P., Bosch, A., Pérez-Fidalgo, J.A. &
Lluch, A. 2012. Molecular
biology in breast cancer: Intrinsic subtypes and signaling pathways.
Cancer Treatment Reviews 38: 698-707.
Govindarajan, S., Sivakumar, J., Garimidi,
P., Rangaraj, N., Kumar, J., Rao,
N. & Gopal, V. 2012. Targeting human epidermal growth factor receptor
2 by a cell-penetrating peptide-affibody
bioconjugate. Biomaterials 33(8): 2570- 2582.
Han, X., Sun, L., Nishiyama, Y., Feng,
B., Michiue, H., Seno, M., Matsui,
H. & Tomizawa, K. 2013. Theranostic protein
targeting ErbB2 for bioluminescence imaging and therapy for
cancer. Plos ONE
8: 9.
Indah Mohd Amin, Roziana
Kamaludin, Swee,
Keong Yeap Mohamad Rodi Isa, Nik Mohd Mazuan Nik Mohd Rosdy, Rosfaiizah Siran, Siti Hamimah
Sheikh Abdul Kadir & Narimah
Abdul Hamid Hasani. 2015. Aloe emodin
induces apoptosis in ER+-breast cancer cells; MCF-7 through
IGF- 1R signalling pathway. Sains
Malaysiana 44(4): 1137-1143.
Iqbal, N. & Iqbal, N. 2014. Human
epidermal growth factor receptor 2 (HER2) in cancers: Overexpression
and therapeutic implications. Molecular Biology International
2014: 1-9.
Jena, B., Dotti, G. & Cooper, L. 2010. Redirecting T-cell specificity by introducing a tumor-specific chimeric
antigen receptor. Blood 116: 7.
Jensen,
M., Popplewell, L., Cooper, L., DiGiusto,
D., Kalos, M., Ostberg,
J. & Forman, S. 2010. Anti-transgene rejection responses
contribute to attenuated persistence of adoptively transferred
CD20/CD19-specific chimeric antigen receptor redirected T cells
in humans. Biology of Blood and Marrow Transplantation 16(9):
1245-1256.
Maher, J. 2012. Immunotherapy
of malignant disease using chimeric antigen receptor engrafted
T-cells. ISRN Oncology 2012: 1-23.
Marchini, A.,
Scott, E. & Rommelaere, J. 2016. overcoming
barriers in oncolytic virotherapy
with HDAC inhibitors and immune checkpoint blockade. Viruses
8(1): 9.
Porter,
D., Levine, B., Kalos, M., Bagg,
A. & June, C. 2011.
Chimeric antigen receptor-modified T cells
in chronic lymphoid leukemia. New England Journal
of Medicine 365(8): 725-733.
Rivkina, A., Holodnuka-Kholodnyuk, I., Murovska,
M., Soloveichika, M. & Lejniece,
S. 2015. Peripheral blood lymphocyte phenotype
of ZAP-70⁺
and ZAP-70⁻ patients with B-cell chronic lymphocytic leukaemia. Experimental Oncology 37: 73-76.
Schroeder,
R., Stevens, C. & Sridhar, J. 2014. Small molecule
tyrosine kinase inhibitors of ERBB2/HER2/Neu
in the treatment of aggressive breast cancer. Molecules
19: 9.
Scott, A.M., Allison,
J.P. & Wolchok, J.D. 2012. Monoclonal
antibodies in cancer therapy. Cancer Immunity 12:
14.
Shaw,
A. & Cornetta, K. 2014. Design
and potential of non-integrating lentiviral vectors.
Biomedicines 2(1): 14-35.
Sinon, S.H.,
Rich, A.M., Firth, N.A. & Seymour, G.J. 2013. Qualitative
and quantitative assessment of immune cells in oral mucosal
lichen planus (OMLP). Sains
Malaysiana 42(1): 65-71.
Stemberger, C.,
Graef, P., Odendahl,
M., Albrecht, J., Dossinger, G. &
Anderl, F. 2014. Lowest numbers of primary CD8+
T cells can reconstitute protective immunity upon adoptive immunotherapy.
Blood 124(4): 628-637.
Teplinsky, E.
& Muggia, F. 2015. EGFR and HER2: Is there a role
in ovarian cancer? Translational Cancer Research 4: 1.
Whiteside, T.L. 2010.
Immune responses to malignancies. The Journal of Allergy
and Clinical Immunology 125(202): 272-283.
Zack,
J., Kim, S. & Vatakis, D. 2013. HIV
restriction in quiescent CD4+ T cells. Retrovirology
10(1): 37.
Zhong, X.,
Matsushita, M., Plotkin, J., Riviere,
I. & Sadelain, M. 2009. Chimeric antigen receptors
combining 4-1BB and CD28 signaling domains augment PI3kinase/AKT/Bcl-XL activation and CD8+ T cell-mediated tumor
eradication. Molecular Therapy 18(2): 413-420.
*Corresponding
author; email: rachelmok2005@gmail.com