Sains Malaysiana 46(10)(2017):
1865–1875
http://dx.doi.org/10.17576/jsm-2017-4610-25
Molecular Docking Studies of Selected Medicinal Drugs as Dengue
Virus-2 Protease Inhibitors
(Kajian Mengedok
Molekul Dadah
Ubatan Terpilih sebagai Perencat Protease Virus-2
Denggi)
RUFAIDAH
OTHMAN1,
ROZANA
OTHMAN2,
AIDA
BAHARUDDIN3,
NAGASUNDARA
RAMANAN
RAMAKRISHNAN4,
NOORSAADAH
ABD
RAHMAN5,
ROHANA
YUSOF6,7 & SAIFUL ANUAR
KARSANI1*
1Institute of Biological
Sciences, Faculty of Science, University of Malaya, 50603 Kuala
Lumpur, Federal Territory, Malaysia
2Department of Pharmacy,
Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur,
Federal Territory, Malaysia
3Department of Biotechnology,
Faculty of Science, Lincoln University College, 47301 Petaling Jaya, Selangor Darul Ehsan,
Malaysia
4School of Engineering,
Monash University Bandar Sunway, 46150 Bandar Sunway, Selangor
Darul Ehsan, Malaysia
5Department of Chemistry,
Faculty of Science, University of Malaya, 50603 Kuala Lumpur,
Federal Territory, Malaysia
6Department of Molecular
Medicine, Faculty of Medicine, University of Malaya, 50603 Kuala
Lumpur, Federal Territory, Malaysia
7Drug Design and Development
Research Group (DDDRG), University of Malaya, 50603 Kuala Lumpur,
Federal Territory, Malaysia
Received: 28 July 2016/Accepted:
20 March 2017
ABSTRACT
Dengue is a potentially
deadly disease with no effective drug. An in silico molecular docking was performed using Autodock 4.2.6 to investigate the molecular interactions between
protease inhibitors, comprising antibiotic derivatives namely
doxycycline (3), rolitetracycline
(5) and a non-steroidal anti-inflammatory drug (NSAID),
meclofenamic acid (4), against
the NS2B-NS3 protease from dengue virus-2 (DENV-2). The non-competitive inhibitor
(3) showed lower binding energy (-5.15 kcal/mol) than the predicted competitive inhibitors 4 and
5 (-3.64 and -3.21 kcal/mol,
respectively). Structural analyses showed compound 3 that
bound to a specific allosteric site, interacted with Lys74,
a significant amino acid residue bonded to one of the catalytic
triad, Asp75. Compounds 4 and 5 showed direct
binding with two of the catalytic triad, His51 and Ser135, hence,
predicted to be competitive inhibitors.
Keywords: Dengue virus-2;
docking; inhibitors; NS2B-NS3 protease
ABSTRAK
Denggi adalah sejenis
penyakit yang boleh
membawa maut dan
sehingga kini
tiada sebarang ubat untuk merawat
penyakit tersebut. Mengedok molekul
secara in silico menggunakan Autodock 4.2.6
telah dijalankan
untuk mengkaji interaksi molekul antara perencat protease yang terdiri daripada derivatif antibiotik iaitu doxycycline (3) dan
rolitetracycline (5) dan
dadah anti-radang bukan steroid (NSAID), asid
meklofenamik (4), terhadap
NS2B-NS3 daripada virus denggi-2 (DENV-2).
Perencat
tidak-kompetitif (3) menunjukkan
tenaga ikatan
yang lebih rendah (-5.15 kcal/mol) berbanding sebatian 4 dan 5 (masing-masing -3.64 dan -3.21 kcal/mol).
Analisis struktur
menunjukkan sebatian
3 yang terikat pada
kawasan alosterik, berinteraksi dengan Lys74, iaitu residu asid
amino yang terikat dengan
salah satu daripada
residu triad pemangkinan,
Asp75. Sebatian 4 dan 5 pula menunjukkan ikatan langsung dengan dua triad pemangkinan iaitu His51 dan Ser135, justeru diramalkan sebagai perencat kompetitif.
Kata kunci: Mengedok;
NS2B-NS3 protease; perencat; virus
denggi-2
REFERENCES
Amorim, J., Alves, R., Boscardin, S. & Ferreira,
L. 2014. The dengue virus non-structural
1 protein: risks and benefits. Virus Research 181(53-60):
53-60.
Atilgan, E. & Hu, J. 2011. Improving protein docking using sustainable genetic algorithms.
International Journal of Computer Information Systems and
Industrial Management Applications 3: 248-255.
Atkovska, K., Samsonov, S.A., Paszkowski-Rogacz, M. & Pisabarro,
M.T. 2014. Multipose binding in molecular docking. International Journal of
Molecular Sciences 15(2): 2622-2645.
Bespamyatnikh, S., Edelsbrunner, V.C.H. & Rudolph,
J. 2004. Accurate
Protein Docking by Shape Complementarity Alone. Duke
University, NC, USA.
Bhatt, S., Gething, P.W., Brady, O.J.,
Messina, J.P., Farlow, A.W., Moyes,
C.L., Drake, J.M., Brownstein, J.S., Hoen,
A.G., Sankoh, O., Myers, M.F., George, D.B., Jaenisch,
T., Wint, G.R.W., Simmons, C.P., Scott,
T.W., Farrar, J.F. & Hay, S.I. 2013. The
global distribution and burden of dengue. Nature 496(7446):
504-507.
Byrd, C., Dai, D., Grosenbach, D., Berhanu, A., Jones, K., Cardwell, K., Schneider, C., Wineinger, K.A., Page, J.M., Harver,
C., Stavale, E., Tyavanagimatt,
S., Stone, M.A., Bartenschlager, R.,
Scaturro, P., Hruby, D.E. & Jordan, R. 2013. A novel inhibitor of dengue virus replication that targets the capsid
protein. Antimicrobial Agents and Chemotheraphy
57(1): 15-25.
Chen, W.N., Loscha, K.V., Nitsche, C., Graham, B. & Otting,
G. 2014. The dengue virus NS2B-NS3 protease retains
the closed conformation in the complex with BPTI. FEBS Letters
588(14): 2206-2211.
Chiu, M., Shih, H., Yang, T. & Yang, Y. 2007. The type 2 dengue virus envelope protein interacts with small ubiquitin-like
modifier-1 (SUMO-1) conjugating enzyme 9 (Ubc9). Journal
of Biomedical Science 14(3): 429-444.
Datar, P.A. & Jadhav, S.R. 2015. Design and synthesis of Pyrazole-3-one derivatives
as hypoglycaemic agents. International
Journal of Medicinal Chemistry 2015: 670181.
Du, Q.S., Wang, Q.Y., Du, L.Q., Chen, D. & Huang, R.B. 2013. Theoretical study on the polar hydrogen-π
(Hp-π) interactions between protein
side chains. Chemistry Central Journal 7(1): 92.
Duax, W.L., Thomas, J.,
Pletnev, V., Addlagatta, A., Huether, R., Habegger, L. &
Weeks, C.M. 2005. Determining structure and
function of steroid dehydrogenase enzymes by sequence analysis,
homology modeling, and rational mutational analysis.
Annals of the New York Academy of Sciences 1061: 135-148.
Erbel,
P., Schiering, N., D’Arcy, A., Renatus,
M., Kroemer, M., Lim, S.P., Zheng Yin, Z., Keller, T.H., Vasudevan,
S.G. & Hommel, U. 2006. Structural basis for the activation of flaviviral NS3 proteases from dengue and West Nile virus.
Nature Structural & Molecular Biology 13(4): 372-372.
Falgout,
B., Pethel, M., Zhang, Y.M. &
Lai, C.J. 1991. Both
nonstructural proteins NS2B and NS3 are required for the proteolytic
processing of dengue virus nonstructural proteins. Journal
of Virology 65(5): 2467-2475.
Frimayanti, N.,
Chee, C., Zain, S.M. & Rahman,
N.A. 2011. Design of new competitive dengue NS2B/NS3 protease
inhibitors - A computational approach. International Journal
of Molecular Sciences 12(2): 1089-1100.
Fukunishi,
Y. & Nakamura, H. 2011. Prediction of
ligand-binding sites of proteins by molecular docking calculation
for a random ligand library. Protein Science 20(1):
95-106.
Grinter,
S.Z. & Zou, X. 2014. Challenges, applications, and recent advances
of protein-ligand docking in structure-based drug design. Molecules
19(7): 10150-10176.
Halstead,
S.B. 2005. More dengue, more questions. Emerging
Infection Disease 11(5): 740-741.
Heh,
C.H., Othman, R., Buckle, M.J.C., Sharifuddin,
Y., Yusof, R. & Rahman, N.A. 2013. Rational
discovery of dengue type 2 non-competitive inhibitors. Chemical
Biology & Drug Design 82(1): 1-11.
Heilman,
J.M., Wolff, J.D., Beards, G.M. & Basden,
B.J. 2014.
Dengue fever: A wikipedia clinical
review. Open Medicine 8(4): 105-115.
Hetényi, C.
& van der Spoel, D. 2006. Blind
docking of drug-sized compounds to proteins with up to a thousand
residues. FEBS Letters 580(5): 1447-1450.
Kadir,
S.L.A., Yaakob, H. & Zulkifli,
R.M. 2013. Potential anti-dengue medicinal plants: A review.
Journal of Natural Medicine 67(4): 677-689.
Kaptein,
S.J.F., Burghgraeve, T.D., Froeyen,
M., Pastorino, B., Alen,
M.M.F., Mondotte, J.A., Herdewijn,
P., Jacobs, M., de Lamballerie, X.,
Schols, D., Gamarnik, A.V., Sztaricskai, F. & Neyts, J.
2010.
A derivate of the antibiotic doxorubicin is a selective inhibitor
of dengue and yellow fever virus replication in vitro.
Antimicrobial Agents and Chemotheraphy 54(12): 5269-5280.
Kellenberger,
E., Schalon, C. & Rognan, D. 2008. How
to measure the similarity between protein ligand-binding sites?
Current Computer-Aided Drug Design 4: 209-220.
Kiat,
T.S., Pippen, R., Yusof, R., Ibrahim,
H., Khalid, N. & Rahman, N.A. 2006. Inhibitory activity
of cyclohexenyl chalcone
derivatives and flavonoids of fingerroot,
Boesenbergia rotunda (L.), towards dengue-2
virus NS3 protease. Bioorganic & Medicinal Chemistry
Letters 16(12): 3337-3340.
Kumar,
C.V.M.N., Taranath, V., Venkatamuni,
A., Vardhan, R.V., Prasad, Y.S., Ravi,
U. & Sai Gopal, D.V.R. 2015. Therapeutic
potential of Carica papaya L. leaf extraction in treatment
of dengue patients. International Journal of Applied
Biology & Pharmaceutical 6(3): 93-98.
Kyle,
J.L. & Harris, E. 2006. Global spread
and persistence of dengue. Annual Review of Microbiology
62: 71-92.
Leung,
D., Schroder, K., White, H., Fang, N.X., Stoermer, M.J., Abbenante,
G., Martin. J.L., Young, P.R. & Fairlie,
D.P. 2001. Activity of recombinant
dengue 2 virus NS3 protease in the presence of a truncated NS2B
Co-factor, small peptide substrates, and inhibitors.
Journal of Biological Chemistry 276(49): 45762-45771.
Lifson, S.,
Hagler, A.T. & Dauber, P. 1979.
Consistent force field studies of intermolecular forces in hydrogen-bonded
crystals. 1. carboxylic acids, amides, and the C=O-H- hydrogen bonds. Journal
of American Chemical Society 101(11): 5111-5121.
Low,
J.S., Wu, K.X., Chen, K.C., Ng, M.M. &
Chu, J.J. 2011. Narasin, a novel antiviral compound that blocks dengue virus protein expression.
Antiviral Theraphy 16(12):
1203-1218.
Mustafa,
M.S., Rasotgi, V., Jain, S. &
Gupta, V. 2015. Discovery of fifth serotype of dengue virus
(DENV-5): A new public health dilemma in dengue control. Armed
Forces Medical Services 71(1): 67-70.
Normile, D.
2013. Surprising new dengue virus throws a spanner in disease
control efforts. Science 342(6157): 415.
Ong,
S.Q. 2016. Dengue vector control in Malaysia: A review for current
and alternative strategies. Sains
Malaysiana 45(5): 777-785.
Othman,
R., Kiat, T.S., Khalid, N., Yusof,
R., Newhouse, I., Newhouse, J.S., Alam,
M. & Rahman, N.A. 2008. Docking of noncompetitive inhibitors into
dengue virus type 2 protease: Understanding
the interactions with allosteric binding sites. Journal of
Chemical Infornation and Modelling 48(8): 1582-1591.
van Panhuis, W.G., Gibbons, R.V., Endy,
T.P., Rothman, A.L., Srikiatkhachorn,
A., Nisalak, A., Burke, D.S. & Cummings, D.A.T. 2010. Inferring the serotype associated with dengue virus infections on
the basis of pre- and postinfection
neutralizing antibody titers. Journal of Infectious
Disease 202(7): 1002-1010.
Rothan,
H.A., Bahrani, H., Mohamed, Z., Rahman,
N.A. & Yusof, R. 2014a. Fusion of Protegrin-1
and Plectasin to MAP30 shows significant
inhibition activity against dengue virus replication. PLoS
ONE 9(4): e94561.
Rothan,
H.A., Mohamed, Z., Paydar, M., Rahman,
N.A. & Yusof, R. 2014b. Inhibitory effect of doxycycline against dengue virus replication
in vitro. Archieves
of Virology 159(2): 711-718.
Rothan, H.A.,
Buckle, M.J., Ammar, Y.A., Shatrah,
P.M., Noorsaadah, A.R. & Rohana, Y.
2013. Study the antiviral activity of some derivatives of tetracycline
and non-steroid anti-inflammatory drugs towards dengue virus.
Tropical Biomedicine 30(6): 1-10.
Sukupolvi-Petty,
S., Austin, S.K., Purtha, W.E., Oliphant,
T., Nybakken, G.E., Schlesinger, J.J., Roehrig,
J.T., Gromowski, G.D., Barrett, A.D.,
Fremont, D.H. & Diamond, M.S. 2007. Type- and subcomplex-specific
neutralizing antibodies against domain III of dengue virus type
2 envelope protein recognize adjacent epitopes. Journal of Virology
81(23): 12816.
Sun,
P. & Kochel, T.J. 2013. The battle between infection and host immune responses of dengue virus
and its implication in dengue disease pathogenesis. The
Scientific World Journal 2013: 843469.
Tomlinson,
S.M., Malmstrom, R.D. & Watowich,
S.J. 2009. New approaches to structure-based
discovery of dengue protease inhibitors. Infectious
Disorders-Drug Targets 9(3): 327-343.
Wan-Norafikah, O., Nazni, W.A., Noramiza, S., Shafa’ar- Ko’ohar, S., Heah, S.K., Nor-Azlina, A.H., Khairul-Asuad, M.
& Lee, H.L. 2012. Distribution of Aedes mosquitoes in three selected localities
in Malaysia. Sains
Malaysiana 41(10): 1309-1313.
Wang,
W.K., Sung, T.L., Lee, C.N., Lin, T.Y. & King, C.C. 2002.
Sequence diversity of the capsid gene and the nonstructural gene NS2B
of dengue-3 virus in vivo. Journal of Virology
303(1): 181-191.
Zhang,
X.G., Mason, P.W., Dubovi, E.J., Xu,
X., Bourne, N., Renshawc, R.W., Blocka, T.M. &
Birka, A.V. 2009. Antiviral
activity of geneticin against dengue
virus. Antiviral Research 83(1): 21-27.
*Corresponding
author; email: saifule78@um.edu.my