Sains Malaysiana 46(10)(2017):
1923–1933
http://dx.doi.org/10.17576/jsm-2017-4610-31
The Influence of Geometrical Shapes of Stenosis on the Blood
Flow in Stenosed Artery
(Pengaruh Bentuk
Geometri Stenosis ke
atas Aliran Darah
dalam Arteri
Stenos)
SARFARAZ
KAMANGAR1*,
IRFAN
ANJUM
BADRUDDIN2,
N.
AMEER
AHAMAD3,
KALIMUTHU
GOVINDARAJU4,
N.
NIK-GHAZALI1,
N.J.
SALMAN
AHMED5,
A. BADARUDIN1
& T.M. YUNUS
KHAN6
1Department
of Mechanical Engineering, University of Malaya, 50603 Kuala
Lumpur, Federal Territory, Malaysia
2Department of Mechanical Engineering, College of Engineering, King Khalid
University, Abha - 61421, Kingdom of Saudi Arabia
3Mathematics Department, Faculty
of Science, University of Tabuk, Saudi
Arabia
4Department of Mechanical and Industrial
Engineering, Mekelle University, Mekelle, Ethiopia
5Department
of Mechanical and Industrial Engineering, Sultan Qaboos
University, 33, Alkhoud, Muscat, 123,
Oman
6Department of Mechanical Engineering, CMR Technical Campus, Hyderabad, India
Received:
9 March 2016/Accepted: 20 March 2017
ABSTRACT
The present work was
carried out to investigate the blood flow behavior and the severity
of blockage caused in the arterial passage due to the different
geometries such as elliptical, trapezium and triangular shapes
of stenosis. The study was conducted with respect to various
sizes of stenosis in terms of 70%, 80% and 90% area blockage
of the arterial blood flow. The study was carried out numerically
with the help of advance computational fluid dynamic software.
It was found that the shape of the stenosis plays an important
role in overall pressure drop across the blockage region of
artery. The highest level of pressure drop was observed for
trapezoidal shape of stenosis followed by elliptical and then
by triangular shaped stenosis. The wall shear stress across
the stenosis is great for trapezoidal shape followed by triangular
and elliptical stenosis for same blockage area in the artery.
Keywords: CFD;
coronary artery; non-Newtonian flow; stenosis
ABSTRAK
Kajian ini dijalankan
untuk mengkaji
sifat aliran darah
dan keterukan
laluan arteri yang tersumbat disebabkan oleh geometri stenosis yang berbeza seperti elips, trapezium dan bentuk segi tiga. Kajian ini dijalankan dengan pelbagai saiz stenosis pada kadar
saiz sumbatan
laluan arteri 70%, 80% dan 90%. Kajian ini dijalankan
dengan kaedah
berangka menggunakan perisian dinamik bendalir. Hasil kajian mendapati
bahawa bentuk
stenosis memainkan peranan penting dalam penurunan
tekanan keseluruhan
pada kawasan arteri
yang tersumbat. Tahap tertinggi
kejatuhan tekanan
diperhatikan berlaku pada stenosis yang berbentuk trapezoid
diikuti oleh
elips dan kemudian
oleh stenosis berbentuk
segi tiga. Tegasan ricih permukaan seluruh stenosis yang paling besar
adalah untuk
bentuk trapezoid, diikuti oleh stenosis segi tiga dan elips.
Kata kunci: Aliran
bukan Newtonian; arteri
koronari; stenosis; CFD
REFERENCES
Banerjee,
R.K., Back, L.H., Back, M.R. & Cho, Y.I. 2003. Physiological flow analysis in significant human coronary artery stenoses. Biorheology
40(4): 451-476.
Berglund,
H., Luo, H., Nishioka, T., Fishbein,
M.C., Eigler, N.L., Tabak,
S.W. & Siegel, R.J. 1997. Highly localized
arterial remodeling in patients with coronary atherosclerosis.
Circulation 96(5): 1470-1476.
Chaichana,
T., Sun, Z. & Jewkes, J. 2012. Computational fluid dynamics analysis of the effect of plaques in
the left coronary artery. Computational and Mathematical
Methods in Medicine 2012: Article ID. 504367.
Chaichana,
T., Sun, Z. & Jewkes, J. 2013. Haemodynamic analysis
of the effect of different types of plaques in the left coronary
artery. Computerized Medical Imaging and Graphics
37(3): 197-206.
Chaichana,
T., Sun, Z. & Jewkes, J. 2014. Impact of plaques in the left coronary artery on wall shear stress
and pressure gradient in coronary side branches. Computer
Methods in Biomechanics and Biomedical Engineering 17(2):
108-118.
Dash,
R.K., Jayaraman, G. & Mehta, K.N.
1999. Flow
in a catheterized curved artery with stenosis. Journal of
Biomechanics 32(1): 49-61.
Deshpande,
M.D., Giddens, D.P. & Mabon, R.F. 1976. Steady laminar flow through modelled
vascular stenoses. Journal of Biomechanics
9(4): 165-174.
Fatemi, R.S. & Rittgers, S.E. 1994. Derivation of shear rates from near-wall LDA measurements under
steady and pulsatile flow conditions. Transactions-American
Society of Mechanical Engineers Journal of Biomechanical Engineering
116: 361-361.
Fry,
D.L. 1973. Responses of the arterial wall
to certain physical factors. In Ciba Foundation Symposium
12 - Atherogenesis: Initiating Factors,
edited by Porter, R. & Knight, J. John Chichester: Wiley & Sons, Ltd. doi:
10.1002/9780470719954. ch5.
Giddens,
D.P., Mabon, R.F. & Cassanova,
R.A. 1976. Measurements of disordered flows distal to subtotal vascular stenoses in the thoracic aortas of dogs. Circulation
Research 39(1): 112-119.
Govindaraju, K.,
Badruddin, I.A., Viswanathan, G.N.,
Kamangar, S., Ahmed, N.S. & Al-Rashed,
A.A. 2016a. Influence of variable bifurcation angulation and
outflow boundary conditions in 3D finite element modelling of
left coronary artery on coronary diagnostic parameter. Current
Science 111(2): 368-374.
Govindaraju, K.,
Viswanathan, G.N., Badruddin, I.A.,
Kamangar, S., Ahmed, N.J. & Al-Rashed,
A.A. 2016b. A parametric study of the effect of arterial wall
curvature on non-invasive assessment of stenosis severity: Computational
fluid dynamics study. Current Science 111(3): 483-491.
Govindaraju, K.,
Kamangar, S., Badruddin,
I.A., Viswanathan, G.N., Badarudin,
A. & Ahmed, N.S. 2014. Effect of porous media of the stenosed
artery wall to the coronary physiological diagnostic parameter:
a computational fluid dynamic analysis. Atherosclerosis 233(2):
630-635.
Ha,
H. & Lee, S.J. 2014. Effect of swirling
inlet condition on the flow field in a stenosed
arterial vessel model. Medical Engineering & Physics
36(1): 119-128.
Jozwik,
K. & Obidowski, D. 2010. Numerical
simulations of the blood flow through vertebral arteries. Journal
of Biomechanics 43(2): 177-185.
Kamangar,
S., Badruddin, I.A., Badarudin,
A., Nik-Ghazali, N., Govindaraju,
K., Salman Ahmed, N.J. & Yunus
Khan, T.M. 2017a. Influence
of stenosis on hemodynamic parameters in the realistic left
coronary artery under hyperemic conditions. Computer Methods
in Biomechanics and Biomedical Engineering 20(4): 365-372.
Kamangar,
S., Badruddin, I.A., Govindaraju,
K., Nik-Ghazali, N., Badarudin,
A., Viswanathan, G.N., Ahmed, N.S. & Khan, T.Y. 2017b. Patient-specific
3D hemodynamics modelling of left coronary artery under hyperemic
conditions. Medical & Biological Engineering & Computing
111(2): 368-374.
Kamangar,
S., Kalimuthu, G., Anjum
Badruddin, I., Badarudin, A., Salman
Ahmed, N.J. & Khan, T.M. 2014. Numerical investigation of the effect of stenosis geometry on the
coronary diagnostic parameters. The Scientific World
Journal 2014: Article ID 354946.
Kagadis,
G.C., Skouras, E.D., Bourantas, G.C.,
Paraskeva, C.A., Katsanos, K., Karnabatidis, D. & Nikiforidis,
G.C. 2008. Computational representation and hemodynamic characterization
of in vivo acquired severe stenotic renal artery geometries
using turbulence modeling. Medical Engineering & Physics
30(5): 647-660.
Keshavarz-Motamed,
Z. & Kadem, L. 2011. 3D pulsatile flow in a curved tube with coexisting model of aortic
stenosis and coarctation of the aorta.
Medical Engineering & Physics 33(3): 315-324.
Khalifa,
A.M.A. & Giddens, D.P. 1978. Analysis of disorder in pulsatile flows with application to poststenotic blood velocity measurement in dogs. Journal
of Biomechanics 11(3): 129- 141.
Konala,
B.C., Das, A. & Banerjee, R.K. 2011. Influence of arterial
wall-stenosis compliance on the coronary diagnostic parameters.
Journal of Biomechanics 44(5): 842-847.
Lee,
T.S. 1994. Steady laminar fluid flow through variable constrictions
in vascular tube. Journal of Fluids Engineering 116(1):
66-71.
Liu,
B. 2007. The influences of stenosis on the
downstream flow pattern in curved arteries. Medical
Engineering & Physics 29(8): 868-876.
Lorenzini,
G. & Casalena, E. 2008. CFD analysis of pulsatile blood flow in an atherosclerotic human artery
with eccentric plaques. Journal of Biomechanics 41(9):
1862-1870.
Mallinger,
F. & Drikakis, D. 2002. Instability in three-dimensional, unsteady, stenotic flows.
International Journal of Heat and Fluid Flow 23(5): 657-663.
Misra,
J.C. & Shit, G.C. 2006. Blood flow through arteries in
a pathological state: A theoretical study. International
Journal of Engineering Science 44(10): 662-671.
Moser,
K.W., Kutter, E.C., Georgiadis,
J.G., Buckius, R.O., Morris, H.D.
& Torczynski, J.R. 2000. Velocity measurements of flow through a step stenosis using magnetic
resonance imaging. Experiments in Fluids 29(5):
438-447.
O’Brien,
V. & Ehrlich, L.W. 1985. I. Simple pulsatile flow in an
artery with a constriction. Journal of Biomechanics 18(2):
117-127.
Paul,
M.C. & Larman, A. 2009. Investigation of spiral blood flow in a model of arterial stenosis.
Medical Engineering & Physics 31(9): 1195-1203.
Peelukhana,
S.V., Back, L.H. & Banerjee, R.K. 2009. Influence of coronary
collateral flow on coronary diagnostic parameters: An in
vitro study. Journal of Biomechanics 42(16): 2753-
2759.
Rajabi-Jaghargh,
E., Kolli, K.K., Back, L.H. &
Banerjee, R.K. 2011.
Effect of guidewire on contribution of loss due to momentum
change and viscous loss to the translesional
pressure drop across coronary artery stenosis: An analytical
approach. Biomedical Engineering Online 10: 51.
Roy,
A.S., Back, L.H. & Banerjee, R.K. 2006. Guidewire flow
obstruction effect on pressure drop-flow relationship in moderate
coronary artery stenosis. Journal of Biomechanics 39(5):
853-864.
Ryou, H.S.,
Kim, S., Kim, S.W. & Cho, S.W. 2012. Construction of healthy
arteries using computed tomography and virtual histology intravascular
ultrasound. Journal of Biomechanics 45(9): 1612-1618.
Shukla,
J.B., Parihar, R.S. & Rao, B.R.P.
1980. Effects of stenosis on non-Newtonian flow of the blood in an artery.
Bulletin of Mathematical Biology 42(3): 283-294.
Tang,
D., Yang, C., Kobayashi, S., Zheng, J. & Vito, R.P. 2003. Effect
of stenosis asymmetry on blood flow and artery compression:
A three-dimensional fluid-structure interaction model. Annals
of Biomedical Engineering 31(10): 1182-1193.
Tobis, J.,
Azarbal, B. & Slavin,
L. 2007. Assessment of intermediate severity
coronary lesions in the catheterization laboratory. Journal
of the American College of Cardiology 49(8): 839-848.
Young,
D.F. 1968. Effect of a time-dependent stenosis
on flow through a tube. Journal of Manufacturing Science
and Engineering 90(2): 248-254.
*Corresponding author; email: sarfaraz.kamangar@gmail.com