Sains Malaysiana 46(10)(2017):
1935–1942
http://dx.doi.org/10.17576/jsm-2017-4610-32
Synthesis of γ-Fe2O3,
Fe3O4 and
Copper Doped Fe3O4 Nanoparticles
by Sonochemical Method
(Sintesis γ-Fe2O3,
Fe3O4 dan Tembaga Terdop dengan Nanopartikel Fe3O4 melalui Kaedah Sonokimia)
KANNUSAMY
MOHANRAJ1*
& GANESAN SIVAKUMAR2
1Department of Physics,
Manonmaniam Sundaranar
University, Tirunelveli-627 012, Tamilnadu,
India
2CISL, Department of Physics,
Annamalai University, Annamalai
Nagar-608 002, Tamilnadu, India
Received:
10 February 2014/Accepted: 1 March 2017
ABSTRACT
Nanoparticles of undoped and copper doped with Fe3O4 of
three concentrations (0.5, 1.0 and 1.5) are synthesized by sonochemical
method. Structural, optical and morphological properties of
these compounds were studied. Fe2+/Fe3+ ratio
is found to be 2.36. Crystalline structure, lattice parameters,
surface morphologies, direct and indirect band gap energies
of the synthesized compounds were estimated and the results
are discussed in detail. The XDR analysis
indicates the Cu doped Fe3O4 nanoparticles
have higher crystallinity than undoped
samples. Average crystallite size is found to increase as Cu
concentration increased. The FTIR results are proven by the presence of mixed magnetite-hematite
nanostructures and it is complement to the XRD results.
The presence of spherical, polygonal and agglomeration forms
of the particles are visually seen in the SEM images. Direct and indirect band gap
energy is found to be decreased as the copper concentration
was increased.
Keywords: Copper; Fe2+/Fe3+ ratio;
magnetite; sonochemical
ABSTRAK
Nanopartikel yang tidak terdop
dan tembaga
yang didop dengan tiga
kepekatan Fe3O4
(0.5, 1.0 dan 1.5) disintesis oleh kaedah sonokimia. Struktur, sifat optik
dan morfologi sebatian
ini dikaji.
Nisbah Fe2+/Fe3+ yang
diperoleh adalah
2.36. Struktur kristal,
parameter kisi, morfologi
permukaan, tenaga jurang jalur langsung
dan tidak
langsung daripada sebatian yang disintesis telah dianggarkan dan hasilnya dibincangkan
secara terperinci.
Analisis XDR
menunjukkan bahawa Cu terdop dengan nanopartikel
Fe3O4 mempunyai
kristalografi yang lebih tinggi daripada sampel yang tidak terdop. Ukuran purata kristal
didapati meningkat
apabila kepekatan Cu meningkat. Keputusan FTIR
dibuktikan oleh
kehadiran struktur
nano hematit magnetit
yang bercampuran dan
ia pelengkap
kepada keputusan
XRD.
Kehadiran
bentuk sfera, poligon
dan aglomerasi
zarah dapat dilihat
secara visual dalam
imej SEM. Tenaga jurang
jalur langsung
dan tidak langsung
didapati menurun
kerana peningkatan kepekatan tembaga.
Kata kunci: Magnetit;
nisbah Fe2+/Fe3+; sonokimia;
tembaga
REFERENCES
Cabrera, L., Gutiérrez, S., Herrasti, P.
& Reyman, D. 2010. Sonoelectrochemical synthesis of magnetite.
Physics Procedia 3: 89-94.
Conceicao, T.F.D., Scharnag, l.N.,
Blawert, C., Dietzel,
W. & Kainer, K.U. 2010. Surface modification of magnesium alloy AZ31 by hydrofluoric acid
treatment and its effect on the corrosion behavior. Thin
Solid Films 518: 5209-5218.
Cong, Y., Wang, G., Xiong, M., Huang, Y.,
Hong, Z., Wang, D., Li, D. & Li, L. 2008. A facile interfacial reaction route to prepare
magnetic hollow spheres with tunable shell thickness.
Langmuir 24: 6624-6629.
Cornell, R.M. & Schwertmann, U. 2003. The Iron Oxide: Structure, Properties, Reaction, Occurrences
and Uses. 2nd ed. (Chapter 6).
Federal Republic of Germany: Wiley-VCH Verlag
GmbH.
Dang, F., Enomoto, N., Hojo, J. & Enpuku, K. 2009. Sonochemical synthesis of monodispersed
magnetite nanoparticles by using an ethanol-water mixed solvent.
Ultrasonics Sonochemistry
16: 649-654.
Darezereshki, E. 2011. One-step
synthesis of hematite (α-Fe2O3)
nanoparticles by direct thermal- decomposition of maghemite.
Materials Letter 65: 642-645.
Darezereshki, E., Ranjibar, M. & Bakhitiari, F. 2010. One-step synthesis of maghemite (γ-Fe2O3)
nanoparticles by wet chemical method. Journals
of Alloy Compounds 502: 257- 260.
Ghandoor, H.E., Zidan, H.M., Khalil, M.M.H. &
Ismail, M.I.M. 2012. Synthesis
and some physical properties of magnetite nanoparticles.
International Journal of Electrochemical Science 7: 5734-5745.
Gupta, R., Sood, A.K., Metcalf, P. &
Honig, J.M. 2002. Raman study of stoichiometric and Zn-doped Fe3O4.
Physics Review B 65: 104430-104438.
Hasanpour, A., Niyaifar, M. & Asan, M. 2012. Synthesis and characterization of Fe3O4 &
ZnO nanocomposites by sol-gel method.
Proceedings of the 4th International Conferences on Nanostructures
(ICNS4), 12-14 March. pp. 205-207.
Hastings, J.M. & Corliss, L.M. 1956. Neutron diffraction study of manganese ferrite.
Physics Review 104: 329-331.
Hou, Y., Yu, J. & Gao, S. 2003. Solvothermal reduction synthesis and characterization of superparamagnetic magnetite
nanoparticles. Journal of Material Chemistry 13:
1983-1987.
Laurent, S., Forge, D., Port, M., Roch,
A., Robic, C., Elst,
L.V. & Mullerm, R.N. 2008. Magnetic
iron oxide nanoparticles: Synthesis, stabilization, vectorization,
physicochemical characterizations and biological applications.
Chemistry Review 108: 2064-2110.
Liu, S.H., Tai, H.M., Pao, C.W., Chiou, J.W., Ling, D.C., Pong, W.F., Tasi,
M-H., Lin, H.J., Jang, L.Y., Lee, J.F., Hsu, J.H., Wang, W.J.
& Hsu, C.J. 2006. Electronic and magnetic
properties of the Ag-doped Fe3O4 films
studied by X-ray absorption spectroscopy. Applied
Physics Letter 89: 092112.
Lodhia, J., Mandarano, G., Ferris, N.J., Eu, P. & Cowell, SF. 2010. Development and use of iron oxide nanoparticles (Part1): Synthesis
of iron oxide nanoparticles for MRI. Biomedical Imaging and
Intervention Journal 6: e12.
Roshan, A.H., Vaezi, M.R., Shokuhfur, A. & Rajabali, Z.
2011. Synthesis of iron oxide nanoparticles via sonochemical method and their characterization. Particuology 9: 95-99.
Sun,
J., Zhou, S., Hou, P., Yang, Y., Weng,
J., Li, X. & Li, M. 2006. Synthesis and
characterization of biocompatible Fe3O4 nanoparticles.
Journal of Biomedical Materials Research Part A
80(2): 333-341.
Tan, J., Yang, L., Kang,
Q. & Cai,
Q. 2011. In situ ATR-FTIR and UV-visible spectroscopy
study of photocatalytic oxidation of ethanol over TiO2
nanotubes. Analytical Letters 44: 1114-1125.
Tang,
J., Myers, M., Bosnick, K.A. &
Brus, L.E. 2003. Magnetic Fe3O4
nanocrystals: Spectroscopic observation of aqueous oxidation
kinetics. Journal of Physical Chemistry B 107: 7501-7506.
Tripathy, D., Adeyeye, A.O., Boothroyd, C.B. &
Shannigrahi, S. 2008. Microstructure
and magneto transport properties of Cu doped Fe3O4
films. Journal of Applied Physics 103: 07F701-07F703.
Tripathy, D.,
Adeyeye, A.O., Boothroyd,
C.B. & Piramanmayagam, S.N. 2007. Magnetic and transport
properties of Co-doped Fe3O4 films. Journal
of Applied Physics 101: 013904.
Varshney, D.,
Verma, K. & Yogi, A. 2011. Structural and magnetic
properties of Mn and Zn doped Fe3O4
nanoparticles. AIP Conference Proceedings 1349: 253-254.
Wang,
X., Hu, C.G., Xi, Y., Xia, C.H. & He, X.S. 2010. Al-doped
Fe3O4 nanoparticles and their magnetic
properties. Journal of Superconductivity and Novel
Magnetism 23: 909-911.
Wu,
S., Sun, A., Zhai, F., Wang, J., Xu,
W., Zhang, Q. & Volinsky, A.A.
2011. Fe3O4
magnetic nanoparticles synthesis from tailings by ultrasonic
chemical co-precipitation. Materials Letters 65:
1882-1884.
Zarzosa, G.O.,
Martinez, J.R., Espinos, O.D., Ruiz,
F. & Aquino, J.A.M. 2000.
Formation of copper based particles trapped in a silica xerogel
matrix. Superficies y vacio 11:
61-65.
*Corresponding
author; email: kmohanraj.msu@gmail.com