Sains Malaysiana 46(10)(2017):
1943–1949
http://dx.doi.org/10.17576/jsm-2017-4610-33
Analisis Arus-Voltan bagi
Pengubahsuaian Proses Fabrikasi
Sel Suria
Silikon Jenis-P ke atas Wafer Silikon
Jenis-N
(Current-Voltage Analysis for the Adaption of P-Type Silicon
Solar Cell Fabrication Process onto N-Type Silicon Wafer)
SUHAILA
SEPEAI*,
WAN
ZULHAFIZHAZUAN,
CHEOW
SIU
LEONG,
N.A.
LUDIN,
M.A.
IBRAHIM,
K.
SOPIAN
& SALEEM H. ZAIDI
Solar Energy Research
Institute (SERI), Universiti Kebangsaan
Malaysia, 43600 Bangi, Selangor Darul
Ehsan, Malaysia
Received: 21 June 2017/Accepted:
30 August 2017
ABSTRAK
Sel suria adalah peranti
semikonduktor yang menukar
tenaga matahari kepada tenaga elektrik. Sel suria generasi
pertama terdiri
dari sel suria
silikon (Si). Pada
masa ini, hampir
90% daripada pasaran pengeluaran fotovolta (PV)
adalah berdasarkan
wafer Si. Ini
disebabkan oleh kecekapan dan ketahanan
yang tinggi serta
jangka hayat yang lama iaitu selama 30 tahun. Proses pemfabrikasian
piawai bagi
sel suria Si dimulakan
dengan proses pencucian
dan penteksturan wafer Si, difusi Fosforus untuk pembentukan pemancar, pembentukan elektrod atas dan
bawah melalui
proses cetakan skrin dan
proses pembakaran yang melengkapkan
fabrikasi sel
suria. Dalam industri,
proses piawai ini
dilakukan pada wafer Si jenis-p. Wafer jenis-n pula mempunyai potensi yang tinggi untuk menghasilkan
sel suria
Si yang berkecekapan tinggi. Namun, proses untuk menghasilkan sel suria silikon atas
Si wafer jenis-n melalui
proses yang lebih rumit
dan lama seperti dua peringkat proses difusi menjadikan wafer jenis-p digunakan secara meluas kerana
dapat merendahkan
kos pemfabrikasian.
Dalam penyelidikan
ini, analisis bagi
arus-voltan bagi
sel suria Si jenis-n
yang difabrikasi menggunakan
adaptasi proses fabrikasi
piawai bagi wafer Si jenis-p akan
dibincangkan. Daripada
kajian simulasi menggunakan perisian PC1D,
didapati bahawa
kecekapan bagi sel suria jenis-p
dan jenis-n
yang difabrikasi dengan kaedah yang sama
adalah 19.63% dan
20.16%. Manakala keputusan eksperimen menunjukkan kecekapan sebanyak 9.44% dan 5.51% bagi sel suria
jenis-p dan
jenis-n.
Kata kunci: Jenis-n; jenis-p; PC1D; sel
suria Si; wafer Si
ABSTRACT
Solar cell is a semiconductor
device that converts solar energy into electricity. First generation
solar cells consist of silicon (Si) solar cells. Currently,
almost 90% of the photovoltaic (PV) production market is based on Si
wafer. This is due to the high efficiency, high durability and
a longer life span of 30 years. The standard fabrication process
for Si solar cells is initiated by washing and texturing the
Si wafer, phosphorus diffusion for the formation of transmitters,
the formation of top and bottom electrodes through screen printing
and combustion process that completed the fabrication of solar
cells. In industry, this standard process is performed on p-type
Si wafer. On the other hand, the n-type wafer has a higher potential
to produce high-efficiency solar cells. However, the process
for producing Si solar cells on n-type Si wafer through a complicated
and longer process, such as two diffusion process stages that
lead to p-type wafers more widely used as it has a lower fabricating
cost. In this study, the current-voltages of n-type Si solar
cells fabricated using the adaptation of the standard fabrication
process of p-type wafer is analyzed and discussed. From the
simulation study using PC1D
software, it was found that the efficiency of
the p-type and n-type solar cells that were fabricated using
the same method were 19.63% and 20.16%. While the experimental
results showed efficiency of 9.44% and 5.51% of the p-type and
n-type solar cells.
Keywords: n-type; p-type; PC1D; solar cell
Si; wafer Si
REFERENCES
Abdullah, H., Saadah, N.H. & Ariyanto, N. 2009. Kesan pengedopan rendah ke atas
bahan nanostruktur
ZnO:AL sebagai
lapisan anti-pantulan.
Sains Malaysiana 38(5):
679-683.
Alurralde, M.,
Tamasi, M.J.L., Bruno, C.J., Mart́nez
Bogado, M.G., Plá,
J., Fernández Vázquez, J., Duran, J., Schuff,
J., Burlon, A.A., Stoliar.
P. & Kreiner, A.J. 2004. Experimental
and theoretical radiation damage studies on crystalline silicon
solar cells. Solar Energy Materials and Solar Cells 82(4):
531-542.
Asim, N., Sopian, K., Ahmadi, S., Saeedfar,
K., Alghoul, M.A., Saadatian, O. & Zaidi, S.H. 2012. A review
on the role of materials science in solar cells. Renewable
and Sustainable Energy Reviews 16(8):
5834-5847.
Cotter, J.E., Guo, J.H., Cousins, P.J.,
Abbott, M.D., Chen, F.W. & Fisher, K.C. 2006. P-type versus
n-type silicon wafers: Prospects for high-efficiency commercial
silicon solar cells. IEEE Transactions on Electron Devices
53(8): 1893-1901.
Fonash, S. 2010. Solar Cell Device Physics. 2nd ed.
New York: Elsevier Inc.
Glunz, S.W.,
Preu, R. & Biro, D. 2012. Crystalline
Silicon Solar Cells. State-of-the-Art
and Future Developments.
Comprehensive Renewable Energy (Vol. 1). New York: Elsevier
Ltd.
Green, M.A., Emery, K., Hishikawa, Y.,
Warta, W. & Dunlop, E.D. 2016. Solar cells utilizing small
molecular weight organic semiconductors. Prog. Photovolt:
Res. Appl. 48(24): 905-913.
Goetzberger, A., Hebling, C. & Schock,
H.W. 2003. Photovoltaic materials, history, status and outlook.
Materials Science and Engineering: R: Reports 40(1):
1-46.
ITRPV. 2017. International
Technology Roadmap for Photovoltaic (ITRPV), 2016 Results. Itrpv Eighth
Edition. pp. 1-37.
Joris Libal, D.R.K. 2015. N-type silicon
solar cell technology: Ready for take off? http://www.pvtech.org/guest_blog/n_type_silicon_solar_cell_technology_ready_for_take_off.
Diakses pada 18 Jun 2017.
Leong,
C.S. 2013.
Evaluation of oxide passivated low reflection nano-structured
solar cells. Tesis. Universiti Kebangsaan Malaysia (tidak
diterbitkan).
Markvart, T. & Castañer, L. 2005.
Solar Cells: Materials,
Manufacture and Operation. Oxford: Elesevier Ltd.
Oktiawati, U.Y.,
Mohamed, N.M. & Burhanudin Z.A.
2017. Applications of Taguchi
method for optimization of dye solar cell design. Sains
Malaysiana 46(3): 503-508.
Sepeai, S.,
Zaidi, S.H., Desa, M.K.M., Sulaiman,
M.Y., Ludin, N.A., Ibrahim, M.A. &
Sopian, K. 2013. Design optimisation
of bifacial solar cells by PC1D simulation. Journal of Energy
Technologies and Policy 3(5): 1-11.
Untila, G.G.
& Zaks, M.B. 2011. Silicon-based photovoltaics:
State of the art and main lines of development. Thermal Engineering
58(11): 932-947.
Zhao,
J., Wang, A., Campbell, P. & Green, M.A. 1999. A 19.8% efficient honeycomb
multicrystalline silicon solar cell
with improved light trapping. IEEE Transaction
on Electron Devices. 46(10): 1978-1983.
*Corresponding
author; email: suhailas@ukm.edu.my