Sains Malaysiana 46(10)(2017):
1979–1986
http://dx.doi.org/10.17576/jsm-2017-4610-37
Kesan Suhu Pensinteran terhadap Sifat Mekanik dan Mikrostruktur
Alumina-Zirkonia yang Difabrikasi
dengan Kaedah
Pengacuan Suntikan Seramik
(Effect of Sintering Temperature on the Mechanical Properties
and Microstructure of Alumina-Zirconia Fabricated via Ceramic
Injection Moulding Method)
SARIZAL
MD
ANI,
ANDANASTUTI
MUCHTAR*,
NORHAMIDI
MUHAMAD
& JAHARAH A. GHANI
Jabatan Kejuruteraan
Mekanik dan
Bahan, Fakulti Kejuruteraan dan Alam Bina, Universiti Kebangsaan Malaysia, 43600 UKM Bangi,
Selangor Darul Ehsan, Malaysia
Received: 7 May 2017/Accepted:
21 July 2017
ABSTRAK
Kesan suhu pensinteran
terhadap sifat
mekanik dan mikrostruktur
bahan komposit
alumina-zirkonia telah dikaji. Jasad hijau alumina-zirkonia difabrikasi dengan menggunakan kaedah pengacuan suntikan seramik menggunakan sistem bahan pengikat
pelbagai komponen.
Jasad perang yang terhasil selepas proses penyahikatan disinter pada suhu 1400, 1450, 1500, 1550, 1600 dan
1650°C selama 2 jam.
Selanjutnya nilai ketumpatan, kekerasan dan keliatan
patah bagi
jasad tersinter diukur. Mikrostruktur jasad tersinter
ditentukan dengan
menggunakan mikroskop imbasan elektron (SEM).
Kajian
menunjukkan nilai ketumpatan, kekerasan dan keliatan patah
bagi jasad
tersinter meningkat sejajar dengan peningkatan suhu pensinteran. Hasil uji kaji juga
mendapati pada suhu pensinteran 1650°C sifat mekanik bahan
mencapai keadaan
maksimum. Penumpatan jasad tersinter 98% menghampiri ketumpatan teori dengan nilai
kekerasan 16.9 GPa
dan keliatan
patah mencecah 3.95 MPa.m1/2.
Keputusan
tersebut dapat dikaitkan dengan mikrostruktur bahan yang padat didorong oleh tumbesaran ira yang lengkap.
Kata kunci: Alumina-zirkonia; pengacuan suntikan seramik; suhu pensinteran
ABSTRACT
The effects of sintering
temperature on the mechanical properties and microstructure
of alumina-zirconia composite were investigated. Alumina-zirconia
parts were successfully fabricated via ceramic injection moulding
method using a multi-component binder system. The debound
parts were sintered at temperatures of 1400, 1450, 1500, 1550,
1600 and 1650°C for 2 h after debinding process.
Furthermore, the density, hardness and fracture toughness of
the sintered parts were measured. The microstructure of the
sintered part was observed via scanning electron microscope.
The results showed that the density, hardness and fracture toughness
of the sintered parts increase with increasing sintering temperature.
The experimental results also indicate that the mechanical properties
of the materials achieve maximum conditions at a sintering temperature
of 1650°C. The densification of the sintered parts is
close to 98.1% of the theoretical density with a hardness of
16.9 GPa
and a fracture toughness of 3.95 MPa.m1/2. The results can be attributed
to the microstructure of the dense material being driven by
complete grain growth.
Keywords: Alumina-zirconia;
ceramic injection moulding; sintering
temperature
REFERENCES
Anstis,
G.R., Chantikul, P., Lawn, B.R. &
Marshall, D.B. 1981. A critical
evaluation of indentation techniques for measuring fracture
toughness: I, direct crack measurements. Journal of the American
Ceramic Society 64: 533-538.
Azhar, A.Z.A.,
Mohamad, H., Ratnam, M.M.
& Ahmad, Z.A. 2010. The effect of MgO
addition on microstructure, mechanical properties and wear performance
of zirconia-toughened alumina cutting inserts. Journal of
Alloys and Compounds 497: 316-320.
Azhar, A.Z.A.,
Ratnam, M.M. &
Ahmad, Z.A. 2009. Effect of Al2O3/YSZ
microstructures on wear and mechanical properties of cutting
inserts. Journal of Alloys and Compounds 478: 608-614.
Callister,
W.D. & Rethwisch, D.G. 2013. Materials Science and Engineering. New Jersey: John
Wiley & Sons.
Chua,
M.I.H., Sulong, A.B., Abdullah, M.F.
& Muhamad, N. 2013. Optimization of injection molding and solvent debinding parameters of stainless steel powder (SS316L) based
feedstock for metal injection molding. Sains
Malaysiana 42(12): 1743-1750.
Chuankrerkkul, N.,
Somton, K., Wonglom,
T., Dateraksa, K. & Laoratanakul,
P. 2016. Physical and mechanical properties of zirconia toughened
alumina (ZTA) composites fabricated by powder injection moulding.
Chiang Mai Journal of Science 43: 375-380.
Cristofolini,
I., Rao, A., Menapace, C. & Molinari,
A. 2010. Influence
of sintering temperature on the shrinkage and geometrical characteristics
of steel parts produced by powder metallurgy. Journal of
Materials Processing Technology 210: 1716-1725.
Farhana Mohd Foudzi. 2011. Keupayaan pemprosesan yttria zirkonia terstabil bersaiz nano dengan bahan
pengikat berasaskan
stearin sawit dalam
pengacuan suntikan serbuk mikro. Tesis
Sarjana Sains,
Jabatan Kejuruteraan Mekanik dan Bahan,
Universiti Kebangsaan
Malaysia (tidak diterbitkan).
Foudzi,
F.M., Muhamad, N., Sulong, A.B. &
Zakaria, H. 2011. Flow behavior
characteristic for injection process using nano-yttria
stabilized zirconia for micro metal injection molding (μMIM).
Applied Mechanics and Materials 44-47: 480-484.
German,
R.M. & Bose, A. 1997. Injection Molding
for Metal and Ceramic. New Jersey: Metal Powder Industries
Federation.
German,
R.M. & Ferchalk, S.K. 2005. Metal
and ceramic injection molding-technical status and future challenges.
Proceeding of Advances in Powder Metallury
& Particulate. hlm.
30-40.
Han,
J.S., Gal, C.W., Kim, J.H. & Park, S.J. 2016. Fabrication of high-aspect-ratio micro piezoelectric array by powder
injection molding. Ceramics International 42:
9475-9481.
Ipek,
M., Zeytin, S. & Bindal,
C. 2011. An evaluation of Al2O3-
ZrO2 composites produced by coprecipitation
method. Journal of Alloys and Compounds 509: 486-489.
Lo Casto, S., Lo Valvo, E., Lucchini, E., Maschio, S., Piacenta, M. & Ruisi, V.F. 1996. Machining
of steel with advanced ceramic tools. Key Engineering
Materials 114: 105-114.
Loebbecke,
B., Knitter, R. & Haubelt, J.
2009. Rheological properties of alumina feedstocks for the low-pressure
injection moulding process.
Journal of the European Ceramic Society 29: 1595-1602.
Mahfuzah, Z.
& Muhammad, H.I. 2017. Rheological behavior of yttria
stabilized zirconia (YSZ) feedstock for ceramic injection moulding
(CIM) process. Materials Science Forum 882: 119-123.
Md Ani,
S., Muchtar, A., Muhamad, N. &
Ghani, J.A. 2014.
Fabrication of zirconia-toughened alumina parts by powder injection
molding process: Optimized processing parameters. Ceramics
International 40: 273-280.
Md Ani,
S., Muchtar, A., Muhamad, N. &
Ghani, J.A. 2013a.
Pencirian
keseragaman campuran dan sifat reologi
serbuk alumina-zirkonia
untuk pengacuan suntikan seramik. Sains Malaysiana 42(9):
1311-1317.
Md Ani,
S., Muchtar, A., Muhamad, N. &
Ghani, J.A. 2013b.
Effects of injection temperature and pressure
on green part density for ceramic injection molding.
Advanced Materials Research 622-623:
429-432.
Mohd Foudzi, F., Muhamad, N., Sulong,
A.B. & Zakaria, H. 2013. Yttria
stabilized zirconia formed by micro ceramic injection molding:
Rheological properties and debinding
effects on the sintered part. Ceramics International 39:
2665-2674.
Mohd Hadzley
Abu Bakar. 2004. Fabrikasi dan
prestasi pemesinan
sisipan perkakas alumina zirkonia. Tesis Sarjana Sains, Jabatan Kejuruteraan Mekanik dan Bahan,
Universiti Kebangsaan
Malaysia (tidak diterbitkan).
Naglieri, V.,
Palmero, P., Montanaro,
L. & Chevalier, J. 2013. Elaboration of alumina-zirconia composites: Role of
the zirconia content on the microstructure and mechanical properties.
Materials 6: 2090-2102.
Ning,
W.Y., Muhamad, N., Sulong, A.B., Fayyaz,
A. & Raza, M.R. 2015. Effect of vanadium carbide on sintered WC- 10%Co produced
by micro-powder injection molding. Sains
Malaysiana 44(8): 1175-1181.
Oungkulsolmongkol, T.,
Salee-Art, P. & Buggakupta,
W. 2010.
Hardness and fracture toughness of alumina-based particulate
composites with zirconia and strontia
additives. Journal of Metals, Materials and Minerals 20:
71-78.
Peng, H., Jiang, X.,
Li, J. & Bai, X. 2015. Advance in research of alumina ceramic
injection molding. Journal of Functional Materials 46:
21007-21011.
Rajabi, J.,
Zakaria, H., Muhamad, N., Sulong,
A.B. & Fayyaz, A. 2015. Fabrication of miniature
parts using nano-sized powders and
an environmentally friendly binder through micro powder injection
molding. Microsystem Technologies 21: 1131-1136.
Sadangi, R.K.,
Shukla, V. & Kear, B.H. 2005. Processing and properties
of ZrO2(3Y2O3)-Al2O3
nanocomposites. International Journal of Refractory Metals
& Hard Materials 23: 363-368.
Song,
X.X., Feng, Y.B. & Qiu, T. 2015. Preparation
of alumina ceramic by injection molding. Journal of
Synthetic Crystals 44: 3634-3638.
Standring, T., Blackburn, S. &
Wilson, P. 2016. Investigation into paraffin wax and ethylene
vinyl acetate blends for use as a carrier vehicle in ceramic
injection molding. Polymer- Plastics Technology and Engineering
55: 802-817.
Szutkowska, M. 2004. Fracture resistence behavior of alumina-zirconia composites. Journal
of Materials Processing Technology 153-154: 868-874.
Tuan,
W.H., Chen, R.Z., Wang, T.C., Cheng, C.H. & Kuo,
P.S. 2002.
Mechanical properties of Al2O3/ZrO2
composites. Journal of the European Ceramic Society
22: 2827-2833.
Yu,
P.C., Li, Q.F., Fuh, J.Y.H., Li, T.
& Lu, L. 2007.
Two-stage sintering of nano-sized
yttria stabilized zirconia process
by powder injection moulding. Journal
of Materials Processing Technology 192-193: 312-318.
Zakaria, H.,
Muhamad, N., Sulong, A.B., Irwan
Ibrahim, M.H. & Foudzi, F. 2014. Moldability
characteristics of 3 mol% yttria
stabilized zirconia feedstock for micro-powder injection molding
process. Sains Malaysiana 43(1):
129-136.
*Corresponding
author; email: muchtar@ukm.edu.my