Sains Malaysiana 46(11)(2017): 2041-2048
http://dx.doi.org/10.17576/jsm-2017-4611-04
Failure Characteristic and Fracture Evolution
Law of Overburden of Thick Coal in Fully Mechanized Sub-level
Caving Mining
(Pencirian Kegagalan dan Evolusi Retakan Hukum Beban Atas
Arang Batu Padat dalam Perlombongan Perampakan Subparas Berjentera
Penuh)
XIAOLEI
WANG1,2, QIRONG QIN1 & CUNHUI FAN1*
1State Key Laboratory of Oil & Gas Reservoir Geology and Exploitation,
Southwest Petroleum University, Chengdu 610050, China
2Heilongjiang Vocational College of Energy, Shuangyashan 155100, China
Received: 30 January 2017/Accepted: 12 May 2017
ABSTRACT
In mining process, the height of water flowing fractured zone is
important significance to prevent mine of water and gas, in
order to further research the failure characteristic of the
overlying strata. Taking certain coal mine with 5.82 m mining
height as the experimental face, by using the equipment which
is sealed two ends by capsules in borehole, affused measurable
water between the two capsules and borehole televiewer system,
ground penetrating radar, microseismic monitoring system in
underground coal mine, the height of water flowing fractured
zone of fully-mechanized top caving are monitored, a numerical
simulation experiment on the failure process was conducted,
a similarity simulation experiment on the cracks evolution was
conducted, at the same time, empirical formula of traditional
was modified, The results showed that the height of caving and
fractured zones were respectively 43.1 and 86.7 m in fully mechanized
sub-level caving mining. The data difference of each test method
of caving, fractured and water flowing fractured zones were
respectively less than 4.5%, 7.1% and 9.0%. The degree of fracture
development was low before mining, the number of fissures was
obviously increased after mining, the degree of fracture development
increased. The fractures cluster region mainly focuses near
the coal wall. The fractures density distribution curves of
overlying strata like sanke-shapes. The new and adapt to certain
coal mine geological conditions empirical formula of water flowing
fractured zone height is proposed.
Keywords: Cracks evolution; empirical formula; ground penetrating
radar; microseismic monitoring system; overburden failure
ABSTRAK
Dalam proses perlombongan, zon retak ketinggian air mengalir
adalah keertian penting untuk mengelakkan lombong daripada air
dan gas untuk kajian lanjut tentang ciri kegagalan strata atas.
Dengan mengambil lombong arang batu tertentu pada ketinggian
lombong 5.82 m sebagai muka uji kaji, menggunakan peralatan
yang ditutup kedua-dua hujung dengan kapsul dalam lubang gerek,
pelakuran air boleh ukur antara dua kapsul tersebut dan sistem
petelelihat lubang gerek, radar menembusi tanah, sistem pemantauan
mikroseismos lombong arang batu bawah tanah, zon retak ketinggian
air mengalir perampakan atas berjentera penuh adalah dipantau,
uji kaji simulasi berangka ke atas proses kegagalan telah dijalankan,
uji kaji simulasi keserupaan pada evolusi retak telah dijalankan
dan pada masa yang sama formula empirik tradisi telah diubah
suai. Keputusan kajian menunjukkan bahawa ketinggian zon perampakan
dan retak masing-masing adalah 43.1 dan 86.7 m dalam perlombongan
perampakan subparas berjentera penuh. Perbezaan data untuk setiap
kaedah ujian zon perampakan, zon retak dan zon retak air mengalir
masing-masing kurang daripada 4.5%, 7.1% dan 9.0%. Tahap pembangunan
retak adalah rendah sebelum perlombongan, bilangan rekahan jelas
meningkat selepas perlombongan serta darjah pembangunan retak
juga meningkat. Rantau kelompok retak tertumpu berhampiran dinding
arang batu. Lengkung taburan kepadatan retak atas strata berbentuk
seperti sanke. Kaedah baru dan sesuai dengan formula empirik
keadaan geologi lombong arang batu tertentu zon retak ketinggian
air mengalir adalah dicadangkan.
Kata kunci: Evolusi retak; formula empirik;
kegagalan beban atas; radar menembusi tanah; sistem pemantauan
mikroseismos
REFERENCES
Cheng, X.F., Liu, S.D.
& Liu, D.X. 2001. Failure law of the sound wave CT detection
after mining. Journal of China Coal Society 26: 153-155.
Chi, A. & Li, Y.
2013. The model for calculating elastic modulus and poisson’s
ratio of coal body. Open Fuels Energy Science Journal 6:
36-43.
Gao, B., Wang, X., Zhu,
M. & Zhou, J. 2012. Dynamic development characteristics
of two zones of overburden strata under conditions of compound
roof highly gassy and thick coal seam in full-mechanized top
coal caving faces. Chinese Journal of Rock Mechanics and
Engineering 31: 3444-3451.
Iannacchione, A.T. &
Tadolini, S.C. 2016. Occurrence, predication, and control of
coal burst events in the US. Int. J. Min. Sci. Technol.
26: 39-46.
Idris, A.B., Ismail,
S., Haron, Y. & Suhana, Y. 2009. Insects of Tasik Chini
with special emphasis on Ichneumonid Wasps. Sains Malaysiana
38(6): 813-816.
Kidybinski, A. & Babcock, C.O. 1973. Stress distribution and
rock fracture zones in the roof of longwall face in a coal mine.
Rock Mech 5: 1-19.
Lindang, H.U., Tarmudi,
Z.H. & Jawan, A. 2017. Assessing water quality index in
river basin: Fuzzy inference system approach. Malaysian Journal
of Geoscience 1(1): 27-31.
Loke, M.H., Chambers,
J.E., Rucker, D.F., Kuras, O. & Wilkinson, P.B. 2013. Recent
developments in the direct-current geoelectrical imaging method.
J. Appl. Geophys. 95: 135-156.
Mills, K.W., Garratt,
O. & Blacka, B.G. 2016. Measurement of shear movements in
the overburden strata ahead of longwall mining. International
Journal of Mining Science and Technology 26: 97-102.
Palchik, V. 2003. Formation
of fractured zones in overburden due to longwall mining. Environ
Geol. 44: 28-38.
Poulsen, B., Manoj Khanal,
A., Manohar, R., Adhikary, D. & Balusu, R. 2014. Mine overburden
dump failure: A case study. Geotech. Geol. Eng. 32: 297-309.
Roslee, R., Bidin, K.,
Musta, B., Tahir, S., Tongkul, F. & Norhisham, M.N. 2017.
GIS application for comprehensive spatial soil erosion analysis
with MUSLE model in Sandakan town area, Sabah, Malaysia. Geological
Behavior 1(1): 1-05.
van Schoor, M. 2005.
The application of in-mine electrical resistance tomography
(ERT) for mapping potholes and other disruptive features ahead
of mining. J. South Afr. Inst. Min. Metall. 105: 447-451.
*Corresponding
author; email: 18039172835@126.com