Sains Malaysiana 46(11)(2017): 2083-2089

http://dx.doi.org/10.17576/jsm-2017-4611-08

 

 Pilot Test of a Fermentation Tank for Producing Coal Methane through Anaerobic Fermentation

(Ujian Perintis Penapaian Tangki untuk Menghasilkan Arang Batu Metana melalui Penapaian Anaerob)

 

DAPING XIA1,2,3, HUAIWEN ZHANG3, XIANBO SU1,3*, XILE LIU3 & CHAOYONG FU3

 

1College of Resource and Environment, Henan Polytechnic University. Jiaozuo 454000, China

 

2Henan Collaborative Innovation Center of Coalbed, Methane and Shale Gas for Central Plains Economic Region, Jiaozuo 454000, China

 

3School of Energy Science and Engineering, Henan Polytechnic University, Jiaozuo Henan 454000

China

 

Received: 3 January 2017/Accepted: 12 May 2017

 

ABSTRACT

The development and utilization of clean energy has long been a focus of research. In the coal bed methane field, most coal bed biogenic methane experiments are small static sample tests in which the initial conditions are set and the process cannot be batch-fed elements and microbial strains, and the gas cannot be collected in batches. Although significant results have been achieved in the coal-to-biogenic methane conversion in China, findings are restricted to the laboratory scale. No successful commercialization of coal bed biogenic methane production has been achieved yet. This study used a large-capacity fermentation tank (5 L) to conduct biogenic methane experiments. Results were compared to those from the traditional laboratory test. The gas production rate and gas concentration were higher when the 250 mL methane test volume was increased to a 5 L fermentation volume, increasing by 20.9% and 2.3%, respectively. The inhibition effect of the liquid phase products was reduced in the large fermentation tank, and the microbial activity was extended by batch feeding trace elements (iron and nickel) and methane strains and by semi-continuous collection of the gas. However, the gas conversion rate can be increased by retaining the H2 and CO2 in the intermediate gas products in the fermentation tank. The gas production rate was increased from 17.9 to 24.6 mL/g, increasing by 37.4%. The simulation pilot test can lay a foundation for the transition from a coal bed biogenic methane laboratory static small sample test to a dynamic pilot test, optimizing the process parameters to improve the reaction efficiency and move forward to commercialization test.

Keywords: Batch-fed trace elements and strains; batch gas collection; coal bed biogenic methane; pilot test

ABSTRAK

Pembangunan dan penggunaan tenaga bersih telah lama menjadi tumpuan penyelidikan. Dalam bidang lapisan batu arang metana, kebanyakan uji kaji lapisan biogen metana adalah ujian sampel statik kecil dengan syarat permulaan ditetapkan dan proses tidak boleh menjadi elemen berkelompok dan strain mikrob, serta gas tidak boleh dikumpulkan secara kelompok. Walaupun keputusan yang bagus telah dicapai dalam penukaran batu arang-kepada-biogen metana di China, namun terhad kepada skala makmal. Tiada pengeluaran secara komersial batu arang biogen metana telah dicapai. Kajian ini menggunakan tangki penapaian berkapasiti besar (5 L) untuk menjalankan uji kaji biogen metana. Keputusan dibandingkan dengan kaedah makmal tradisi. Kadar pengeluaran dan kepekatan gas adalah lebih tinggi apabila 250 mL isi padu ujian metana meningkat kepada 5 L isi padu penapaian, masing-masing sebanyak 20.9% dan 2.3%. Kesan perencatan pada produk dalam fasa cecair dikurangkan dalam tangki penapaian yang besar dan aktiviti mikrob dilanjutkan dengan pemberian berkelompok unsur surih (besi dan nikel) dan strain metana dengan pengumpulan gas secara separa selanjar. Walau bagaimanapun, kadar penukaran gas boleh dinaikkan dengan mengekalkan H2 dan CO2 dalam produk gas pertengahan dalam tangki penapaian. Kadar pengeluaran gas meningkat daripada 17.9 kepada 24.6 mL/g, peningkatan sebanyak 37.4%. Ujian simulasi rintis boleh meletakkan asas bagi peralihan daripada ujian lapisan batu arang biogen metana statik makmal pada sampel kecil kepada ujian rintis yang dinamik, mengoptimumkan proses parameter untuk meningkatkan kecekapan reaksi dan mara kepada ujian pengkomersialan.

Kata kunci: Koleksi kelompok gas; lapisan arang batu biogen metana; pemberian-berkelompok unsur surih dan strain; ujian rintis

REFERENCES

Chen, L. & Qian, C. 2012. Obligate anaerobes fermentation tank hydrogen preparation process. Journal of Southeast University: Natural Science Edition 42(3): 498-502.

Faison, B.D. 1992. The chemistry of low rank coal and its relationship to the biochemical mechanisms of coal biotransformation. In Microbial Transformations of Low Rank Coals, edited by Crawford, D.L. Boca Raton: CRC Press. pp. 1-26.

Li, S., Mei, Z., Chang, M., 2014. Scum biogas production potential of corn stalk biogas fermentation tank at different heights. China Biogas 32(5): 33-35.

Li, G., Yang, L.Z. & Ouyang, F. 2001. Analysis on the control factors of anaerobic digestion process and influence of pH and Eh. Journal of Southwest Jiaotong University 36(5): 518-521.

Lion, M., Shamsuddin, S.A. & Ahmad, W.M.S.W. 2017. Sap flow study on two different diameter sizes of Tectona grandis. Sains Malaysiana 46(3): 359-363.

Harris, S.H., Smith, R.L. & Barker, C.E. 2008. Microbial and chemical factors influencing methane production in laboratory incubations of low-rank subsurface coals. International Journal of Coal Geology 76(1-2): 46-51.

Heller, R., Vermylen, J. & Zoback, M. 2014. Experimental investigation of matrix permeability of gas shales. AAPG Bulletin 98(5): 975-995.

He, R.Y., Yan, Z.Y., Liu, X.F., Yuan, Y.X., Liao, Y.Z., Wang, J.J., He, R.N. & Li, X.D. 2007. Enhancement of biogas production by dry fermentation with straws. Journal of Applied and Environmental Biology 13(4): 583-585.

Hu, Y., Yuan, Y., Yan, Z., Liao, Y., Liu, X., He, R., Zhang, H. & Guan, Y. 2009. Identification and phylogenetic analysis of a strain methanogen with wide range of growing pH. Chinese Journal of Applied and Environmental Biology 15(4): 554-558.

Huang, Z., Urynowicz, M.A. & Colberg, P.J.S. 2013. Stimulation of biogenic methane generation in coal samples following chemical treatment with potassium permanganate. Fuel 111(5): 813-819.

Ijaz, U. & Yasin, M. 2017. Determination of ground water potential by electric resistivity method in Rawalakot and adjoining areas of the Sub-Himalayan fold and thrust Belt of Pakistan. Pakistan Journal of Geology 1(1): 01-04.

Jiang, H., Duan, C., Jiang, P., Liu, M., Luo, M. & Xing, X.H. 2016. Characteristics of scale-up fermentation of mixed methane-oxidizing bacteria. Biochemical Engineering Journal 109: 112-117.

Kamiński, M., Kartanowicz, R., Jastrzębski, D. & Kamiński, M.M. 2003. Determination of carbon monoxide, methane and carbon dioxide in refinery hydrogen gases and air by gas chromatography. Journal of Chromatography A 989(2): 277-283.

Opara, A., Adams, D.J., Free, M.L., McLennan, J. & Hamilton, J. 2012. Microbial production of methane and carbon dioxide from lignite, bituminous coal, and coal waste materials. International Journal of Coal Geology 96-97: 1-8.

Pan, L., Wu, B., Duan, S., Lan, W., Liang, W. & Shen, P. 2009. The effect of urea addition on fermentating methane in the simulate fermentation tank. Genomics and Applied Biology 28(6): 487-494.

Park, S.Y. & Liang, Y. 2016. Biogenic methane production from coal: A review on recent research and development on microbially enhanced coalbed methane (MECBM). Fuel 166: 258-267.

Rezaeian, M., Beakes, G.W. & Chaudhry, A.S. 2005. Relative fibrolytic activities of anaerobic rumen fungi on untreated and sodium hydroxide treated barley straw in in vitro culture. Anaerobe 11(3): 163-175.

Roslee, R., Tongkul, F., Simon, N. & Norhisham, M.N. 2017. Flood potential analysis (FPAn) using geo-spatial data in Penampang area, Sabah. Malaysian Journal of Geoscience 1(1): 1-6.

Senthamaraikkannan, G., Gates, I. & Prasad, V. 2015. Development of a multiscale microbial kinetics coupled gas transport model for the simulation of biogenic coalbed methane production. Fuel 167: 188-198.

Sharma, S.K., Mishra, I.M., Sharma, M.P. & Saini, J.S. 1988. Effect of particle size on biogas generation from biomass residues. Biomass 17(4): 251-263.

Su, X.B., Wu, Y., Xia, D.P. & Chen, X. 2013a. Experimental design schemes for bio-methane production from coal and optimal selection. Natural Gas Industry 33(5): 132-136.

Su, X.B., Wu, Y., Xia, D.P. & Chen, X. 2013b. Experimental study on the simulated biological methane production process with lean coal. Journal of China Coal Society 38(6): 1055-1059.

Thararoop, P., Karpyn, Z.T. & Ertekin, T. 2012. Development of a multi-mechanistic, dual-porosity, dual-permeability, numerical flow model for coalbed methane reservoirs. Journal of Natural Gas Science & Engineering 8(9): 121-131.

 

*Corresponding author; email: 1054608403@qq.com

 

 

 

 

 

 

 

previous