Sains Malaysiana 46(11)(2017): 2083-2089
http://dx.doi.org/10.17576/jsm-2017-4611-08
Pilot Test of a Fermentation Tank for Producing
Coal Methane through Anaerobic Fermentation
(Ujian Perintis Penapaian Tangki untuk Menghasilkan Arang Batu Metana
melalui Penapaian Anaerob)
DAPING XIA1,2,3, HUAIWEN ZHANG3, XIANBO SU1,3*,
XILE LIU3 & CHAOYONG FU3
1College of Resource and Environment, Henan Polytechnic University.
Jiaozuo 454000, China
2Henan Collaborative Innovation Center of Coalbed, Methane and Shale
Gas for Central Plains Economic Region, Jiaozuo 454000, China
3School of Energy Science and Engineering, Henan Polytechnic University,
Jiaozuo Henan 454000
China
Received: 3 January 2017/Accepted: 12 May 2017
ABSTRACT
The development and utilization of clean energy has long
been a focus of research. In the coal bed methane field, most
coal bed biogenic methane experiments are small static sample
tests in which the initial conditions are set and the process
cannot be batch-fed elements and microbial strains, and the
gas cannot be collected in batches. Although significant results
have been achieved in the coal-to-biogenic methane conversion
in China, findings are restricted to the laboratory scale. No
successful commercialization of coal bed biogenic methane production
has been achieved yet. This study used a large-capacity fermentation
tank (5 L) to conduct biogenic methane experiments. Results
were compared to those from the traditional laboratory test.
The gas production rate and gas concentration were higher when
the 250 mL methane test volume was increased to a 5 L fermentation
volume, increasing by 20.9% and 2.3%, respectively. The inhibition
effect of the liquid phase products was reduced in the large
fermentation tank, and the microbial activity was extended by
batch feeding trace elements (iron and nickel) and methane strains
and by semi-continuous collection of the gas. However, the gas
conversion rate can be increased by retaining the H2 and CO2 in the intermediate gas products in the fermentation tank. The gas production
rate was increased from 17.9 to 24.6 mL/g, increasing by 37.4%.
The simulation pilot test can lay a foundation for the transition
from a coal bed biogenic methane laboratory static small sample
test to a dynamic pilot test, optimizing the process parameters
to improve the reaction efficiency and move forward to commercialization
test.
Keywords: Batch-fed trace elements and strains; batch
gas collection; coal bed biogenic methane; pilot test
ABSTRAK
Pembangunan dan penggunaan tenaga bersih telah lama menjadi
tumpuan penyelidikan. Dalam bidang lapisan batu arang metana,
kebanyakan uji kaji lapisan biogen metana adalah ujian sampel
statik kecil dengan syarat permulaan ditetapkan dan proses tidak
boleh menjadi elemen berkelompok dan strain mikrob, serta gas
tidak boleh dikumpulkan secara kelompok. Walaupun keputusan
yang bagus telah dicapai dalam penukaran batu arang-kepada-biogen
metana di China, namun terhad kepada skala makmal. Tiada pengeluaran
secara komersial batu arang biogen metana telah dicapai. Kajian
ini menggunakan tangki penapaian berkapasiti besar (5 L) untuk
menjalankan uji kaji biogen metana. Keputusan dibandingkan dengan
kaedah makmal tradisi. Kadar pengeluaran dan kepekatan gas adalah
lebih tinggi apabila 250 mL isi padu ujian metana meningkat
kepada 5 L isi padu penapaian, masing-masing sebanyak 20.9%
dan 2.3%. Kesan perencatan pada produk dalam fasa cecair dikurangkan
dalam tangki penapaian yang besar dan aktiviti mikrob dilanjutkan
dengan pemberian berkelompok unsur surih (besi dan nikel) dan
strain metana dengan pengumpulan gas secara separa selanjar.
Walau bagaimanapun, kadar penukaran gas boleh dinaikkan dengan
mengekalkan H2 dan CO2 dalam produk gas pertengahan dalam tangki penapaian.
Kadar pengeluaran gas meningkat daripada 17.9 kepada 24.6 mL/g,
peningkatan sebanyak 37.4%. Ujian simulasi rintis boleh meletakkan
asas bagi peralihan daripada ujian lapisan batu arang biogen
metana statik makmal pada sampel kecil kepada ujian rintis yang
dinamik, mengoptimumkan proses parameter untuk meningkatkan
kecekapan reaksi dan mara kepada ujian pengkomersialan.
Kata kunci: Koleksi kelompok gas; lapisan
arang batu biogen metana; pemberian-berkelompok unsur surih
dan strain; ujian rintis
REFERENCES
Chen, L. & Qian,
C. 2012. Obligate anaerobes fermentation tank hydrogen preparation
process. Journal of Southeast University: Natural Science
Edition 42(3): 498-502.
Faison, B.D. 1992. The
chemistry of low rank coal and its relationship to the biochemical
mechanisms of coal biotransformation. In Microbial Transformations
of Low Rank Coals, edited by Crawford, D.L. Boca Raton:
CRC Press. pp. 1-26.
Li, S., Mei, Z., Chang,
M., 2014. Scum biogas production potential of corn stalk biogas
fermentation tank at different heights. China Biogas 32(5):
33-35.
Li, G., Yang, L.Z. & Ouyang, F. 2001. Analysis on the control
factors of anaerobic digestion process and influence of pH and
Eh. Journal of Southwest Jiaotong University 36(5): 518-521.
Lion, M., Shamsuddin, S.A. & Ahmad, W.M.S.W. 2017. Sap flow study
on two different diameter sizes of Tectona grandis. Sains
Malaysiana 46(3): 359-363.
Harris, S.H., Smith,
R.L. & Barker, C.E. 2008. Microbial and chemical factors
influencing methane production in laboratory incubations of
low-rank subsurface coals. International Journal of Coal
Geology 76(1-2): 46-51.
Heller, R., Vermylen,
J. & Zoback, M. 2014. Experimental investigation of matrix
permeability of gas shales. AAPG Bulletin 98(5): 975-995.
He, R.Y., Yan, Z.Y.,
Liu, X.F., Yuan, Y.X., Liao, Y.Z., Wang, J.J., He, R.N. &
Li, X.D. 2007. Enhancement of biogas production by dry fermentation
with straws. Journal of Applied and Environmental Biology
13(4): 583-585.
Hu, Y., Yuan, Y., Yan,
Z., Liao, Y., Liu, X., He, R., Zhang, H. & Guan, Y. 2009.
Identification and phylogenetic analysis of a strain methanogen
with wide range of growing pH. Chinese Journal of Applied
and Environmental Biology 15(4): 554-558.
Huang, Z., Urynowicz,
M.A. & Colberg, P.J.S. 2013. Stimulation of biogenic methane
generation in coal samples following chemical treatment with
potassium permanganate. Fuel 111(5): 813-819.
Ijaz, U. & Yasin,
M. 2017. Determination of ground water potential by electric
resistivity method in Rawalakot and adjoining areas of the Sub-Himalayan
fold and thrust Belt of Pakistan. Pakistan Journal of Geology
1(1): 01-04.
Jiang, H., Duan, C.,
Jiang, P., Liu, M., Luo, M. & Xing, X.H. 2016. Characteristics
of scale-up fermentation of mixed methane-oxidizing bacteria.
Biochemical Engineering Journal 109: 112-117.
Kamiński, M., Kartanowicz,
R., Jastrzębski, D. & Kamiński, M.M. 2003. Determination
of carbon monoxide, methane and carbon dioxide in refinery hydrogen
gases and air by gas chromatography. Journal of Chromatography
A 989(2): 277-283.
Opara, A., Adams, D.J.,
Free, M.L., McLennan, J. & Hamilton, J. 2012. Microbial
production of methane and carbon dioxide from lignite, bituminous
coal, and coal waste materials. International Journal of
Coal Geology 96-97: 1-8.
Pan, L., Wu, B., Duan,
S., Lan, W., Liang, W. & Shen, P. 2009. The effect of urea
addition on fermentating methane in the simulate fermentation
tank. Genomics and Applied Biology 28(6): 487-494.
Park, S.Y. & Liang,
Y. 2016. Biogenic methane production from coal: A review on
recent research and development on microbially enhanced coalbed
methane (MECBM). Fuel 166: 258-267.
Rezaeian, M., Beakes,
G.W. & Chaudhry, A.S. 2005. Relative fibrolytic activities
of anaerobic rumen fungi on untreated and sodium hydroxide treated
barley straw in in vitro culture. Anaerobe 11(3):
163-175.
Roslee, R., Tongkul,
F., Simon, N. & Norhisham, M.N. 2017. Flood potential analysis
(FPAn) using geo-spatial data in Penampang area, Sabah. Malaysian
Journal of Geoscience 1(1): 1-6.
Senthamaraikkannan,
G., Gates, I. & Prasad, V. 2015. Development of a multiscale
microbial kinetics coupled gas transport model for the simulation
of biogenic coalbed methane production. Fuel 167: 188-198.
Sharma, S.K., Mishra,
I.M., Sharma, M.P. & Saini, J.S. 1988. Effect of particle
size on biogas generation from biomass residues. Biomass
17(4): 251-263.
Su, X.B., Wu, Y., Xia,
D.P. & Chen, X. 2013a. Experimental design schemes for bio-methane
production from coal and optimal selection. Natural Gas Industry
33(5): 132-136.
Su, X.B., Wu, Y., Xia,
D.P. & Chen, X. 2013b. Experimental study on the simulated
biological methane production process with lean coal. Journal
of China Coal Society 38(6): 1055-1059.
Thararoop, P., Karpyn,
Z.T. & Ertekin, T. 2012. Development of a multi-mechanistic,
dual-porosity, dual-permeability, numerical flow model for coalbed
methane reservoirs. Journal of Natural Gas Science &
Engineering 8(9): 121-131.
*Corresponding author; email: 1054608403@qq.com