Sains Malaysiana 46(11)(2017): 2101-2108

http://dx.doi.org/10.17576/jsm-2017-4611-10

 

 Shear Strength of Cemented Sand Gravel and Rock Materials

(Kekuatan Ricih Pasir Kerikil Bersimen dan Bahan Batu)

 

ZHONGWEI LIU*, JINSHENG JIA, WEI FENG, FENGLING MA & CUIYING ZHENG

 

Division of Materials, China Institute of Water Resources and Hydropower Research, Beijing 100038, China

 

Received: 8 January 2017/Accepted: 4 June 2017

 

ABSTRACT

Shear strength is currently a significant parameter in the design of cemented sand gravel and rock (CSGR) dams. Shear strength tests were carried out to compare material without layers noumenon and layer condition. The experimental results showed good linearity in the curves of shear strength and pure grinding tests with correlation coefficients of nearly 97%. The friction coefficient was similar to that of C10 roller-compacted concrete (RCC), but the cohesion value was weaker than that of RCC. The shear strength of the CSGR layers decreased by 40% when retarding mixtures were not added and the layer was paved immediately after 4 h of waiting interval.

 

Keywords: Cohesion; CSGR; friction; layer; shear strength

 

ABSTRAK

Kekuatan ricih merupakan parameter penting dalam reka bentuk pasir kerikil bersimen dan batu empangan (CSGR). Ujian kekuatan ricih dilakukan untuk membandingkan bahan tanpa lapisan noumenon dan keadaan berlapis. Keputusan eksperimen menunjukkan garis lurus yang baik dalam lengkungan kekuatan ricih dan ujian pengisaran tulen dengan pekali korelasi menghampiri 97%. Pekali geseran adalah sama dengan penggelek konkrit yang dipadatkan C10 (RCC), tetapi nilai kejeleketan lebih rendah berbanding RCC. Kekuatan ricih lapisan CSGR menurun sebanyak 40% apabila campuran perencat tidak ditambah dan lapisan itu diturap dengan serta-merta selepas selang masa 4 jam.

 

Kata kunci: CSGR; geseran; kejeleketan; kekuatan ricih; lapisan

REFERENCES

Asmida, I., Noor Akmal, A.B., Ahmad, I. & Sarah Diyana, M. 2017. Biodiversity of macroalgae in Blue Lagoon, the Straits of Malacca, Malaysia and some aspects of changes in species composition. Sains Malaysiana 46(1): 1-7.

Carvajal, C., Peyras, L., Bacconnet, C. & Becue, J. 2009. Probability modelling of shear strength parameters of RCC gravity dams for reliability analysis of structural safety. European Journal of Environmental and Civil Engineering 13(1): 91-119.

Cervera, M., Oliver, J. & Prato, T. 2000. Simulation of construction of RCC dams. II: Stress and damage. Journal of Structural Engineering-asce 126(9): 1062- 1069.

Das, S.K. & Yudhbir. 2005. Geotechnical characterization of some indian fly ashes. Journal of Materials in Civil Engineering 17(5): 544-552.

DL/T 5055. 2007. Technical Specification of Fly Ash for Use in Hydraulic Concrete. Beijing: China Electric Power Press.

Farinha, M.L., Caldeira, L.M. & Neves, E.M. 2015. Limit state design approach for the safety evaluation of the foundations of concrete gravity dams. Structure and Infrastructure Engineering 11(10): 1306-1322.

Feng, W., Jia, J.S. & Ma, F.L. 2013. Study on design parameters of mix proportion forcemented sand and gravel (CSG). Water Resources and Hydropower Engineering 44(2): 55-58.

Gouvas, H. & Orfanos, C. 2014. Determination of factors affecting compressive strength of lean RCC mixtures: The experience of Filiatrinos Dam. Geotechnical and Geological Engineering 32(5): 1317-1327.

Jia, J., Liu, N., Zheng, C., Ma, F., Du, Z. & Wang, Y. 2016. Studies on cemented material dams and its application. Journal of Hydraulic Engineering 47(3): 315-323.

John, A., Hassan, B., Nur Hanisa, S., Kamaruzzaman, M. & Kadhar Sha, B.Y. 2017. Community structure and post-monsoonal distribution of icthyoplankton in Kuatan river, Malaysia. Environment Ecosystem Science 1(1): 01-03.

Khan, A., Rehman, R., Rashid, H. & Nasir, A. 2017. Exploration of environmental friendly adsorbents for treatment of azo dyes from textile wastewater and its dosage optimization. Earth Science Pakistan 1(1): 05- 07.

Nagataki, S., Fujisawa, T. & Kawasaki, H. 2008. State of art of RCD Dams in Japan. Anais do 50° Congresso Brasileiro do Concreto CBC2008-RCC Symposium Setmbro. pp. 1-20.

Oyanguren, P.R., Nicieza, C.G., Fernandez, M.I. & Palacio, C.G. 2008. Stability analysis of Llerin Rockfill Dam: An in situ direct shear test. Engineering Geology 100(3): 120-130.

Park, C., Yoon, J., Kim, W. & Won, J. 2007. Mechanical and durability performance of roller-compacted concrete with fly ash for dam applications. International Journal of Concrete Structures and Materials 1(1): 57-61.

Schrader, E.K. 1977. Roller-compacted concrete. Materials & Structures 34(7): 413-417.

Shi, Y. & Fang, K.H. 2006. Strength of roller compacted concrete. Key Engineering Materials 302-303(6): 398-402.

Song, Y.P., Wen, W. & Wang, H.L. 2012. Analysis on compression-shear strength of roller compacted concrete. Journal of Water Resources and Architectural Engineering 6: 44-47.

SL352. 2006. Test Code for Hydraulic Concrete. Beijing: China Waterpower Press.

SL678. 2014. Technical Guidelines for Cemented Material Dams. Beijing: China Waterpower Press.

Wang, J., Yang, Y. & Chai, H. 2016. Strength of a roller compacted rockfill sandstone from in-situ direct shear test. Soil Mechanics and Foundation Engineering 53(1): 30-34.

Wang, W., Kou, S. & Xing, F. 2013. Deformation properties and direct shear of medium strength concrete prepared with 100% recycled coarse aggregates. Construction and Building Materials 48: 187-193.

Yuan, C.H., Zhou, J. & Min, H. 2005. An experiment study of shearing strength of roller compacted concrete (RCC). Soil Engineering and Foundation 19(5): 68-71.

Huan, Z.Q., Song, Y.P. & Wu, Z.M. 2005. Numerical simulation of tensile failure at adjacent concrete layers in RCC dams. Journal of Hydraulic Engineering 6: 680-686, 693.

Zhou, J.P. & Dang, L.C. 2011. Hydraulic Design Manual. 5th Volume of Concrete Dams. Beijing: China Waterpower Press. p. 380.

 

 

*Corresponding author; email: lzw9958@163.com

 

 

 

 

 

 

 

 

previous