Sains Malaysiana 46(11)(2017): 2101-2108
http://dx.doi.org/10.17576/jsm-2017-4611-10
Shear Strength of Cemented
Sand Gravel and Rock Materials
(Kekuatan
Ricih Pasir Kerikil Bersimen dan Bahan Batu)
ZHONGWEI LIU*, JINSHENG JIA, WEI FENG, FENGLING MA & CUIYING
ZHENG
Division
of Materials, China Institute of Water Resources and Hydropower
Research, Beijing 100038, China
Received:
8 January 2017/Accepted: 4 June 2017
ABSTRACT
Shear strength is currently a significant parameter in the design of cemented
sand gravel and rock (CSGR) dams. Shear strength tests were carried out to compare
material without layers noumenon and layer condition. The experimental
results showed good linearity in the curves of shear strength
and pure grinding tests with correlation coefficients of nearly
97%. The friction coefficient was similar to that of C10
roller-compacted
concrete (RCC), but the cohesion value was weaker than
that of RCC. The shear strength of the CSGR layers decreased by 40% when retarding mixtures were
not added and the layer was paved immediately after 4 h of waiting
interval.
Keywords: Cohesion; CSGR; friction; layer; shear strength
ABSTRAK
Kekuatan ricih merupakan parameter penting dalam reka bentuk pasir
kerikil bersimen dan batu empangan (CSGR). Ujian kekuatan ricih dilakukan
untuk membandingkan bahan tanpa lapisan noumenon dan keadaan
berlapis. Keputusan eksperimen menunjukkan garis lurus yang
baik dalam lengkungan kekuatan ricih dan ujian pengisaran tulen
dengan pekali korelasi menghampiri 97%. Pekali geseran adalah
sama dengan penggelek konkrit yang dipadatkan C10 (RCC), tetapi nilai kejeleketan
lebih rendah berbanding RCC. Kekuatan ricih lapisan CSGR
menurun sebanyak 40% apabila campuran perencat
tidak ditambah dan lapisan itu diturap dengan serta-merta selepas
selang masa 4 jam.
Kata kunci: CSGR; geseran; kejeleketan; kekuatan ricih; lapisan
REFERENCES
Asmida, I., Noor Akmal, A.B., Ahmad,
I. & Sarah Diyana, M. 2017. Biodiversity of macroalgae in
Blue Lagoon, the Straits of Malacca, Malaysia and some aspects
of changes in species composition. Sains Malaysiana 46(1):
1-7.
Carvajal, C., Peyras, L., Bacconnet,
C. & Becue, J. 2009. Probability modelling of shear strength
parameters of RCC gravity dams for reliability analysis of structural
safety. European Journal of Environmental and Civil Engineering
13(1): 91-119.
Cervera, M., Oliver, J. & Prato,
T. 2000. Simulation of construction of RCC dams. II: Stress
and damage. Journal of Structural Engineering-asce 126(9):
1062- 1069.
Das, S.K. & Yudhbir. 2005. Geotechnical
characterization of some indian fly ashes. Journal of Materials
in Civil Engineering 17(5): 544-552.
DL/T 5055. 2007. Technical Specification
of Fly Ash for Use in Hydraulic Concrete. Beijing: China
Electric Power Press.
Farinha, M.L., Caldeira, L.M. &
Neves, E.M. 2015. Limit state design approach for the safety
evaluation of the foundations of concrete gravity dams. Structure
and Infrastructure Engineering 11(10): 1306-1322.
Feng, W., Jia, J.S. & Ma, F.L.
2013. Study on design parameters of mix proportion forcemented
sand and gravel (CSG). Water Resources and Hydropower Engineering
44(2): 55-58.
Gouvas, H. & Orfanos, C. 2014.
Determination of factors affecting compressive strength of lean
RCC mixtures: The experience of Filiatrinos Dam. Geotechnical
and Geological Engineering 32(5): 1317-1327.
Jia, J., Liu, N., Zheng, C., Ma,
F., Du, Z. & Wang, Y. 2016. Studies on cemented material
dams and its application. Journal of Hydraulic Engineering
47(3): 315-323.
John, A., Hassan, B., Nur Hanisa,
S., Kamaruzzaman, M. & Kadhar Sha, B.Y. 2017. Community
structure and post-monsoonal distribution of icthyoplankton
in Kuatan river, Malaysia. Environment Ecosystem Science
1(1): 01-03.
Khan,
A., Rehman, R., Rashid, H. & Nasir, A. 2017. Exploration
of environmental friendly adsorbents for treatment of azo dyes
from textile wastewater and its dosage optimization. Earth
Science Pakistan 1(1): 05- 07.
Nagataki, S., Fujisawa, T. &
Kawasaki, H. 2008. State of art of RCD Dams in Japan. Anais
do 50° Congresso Brasileiro do Concreto CBC2008-RCC Symposium
Setmbro. pp. 1-20.
Oyanguren, P.R., Nicieza, C.G.,
Fernandez, M.I. & Palacio, C.G. 2008. Stability analysis
of Llerin Rockfill Dam: An in situ direct shear test.
Engineering Geology 100(3): 120-130.
Park, C., Yoon, J., Kim, W. &
Won, J. 2007. Mechanical and durability performance of roller-compacted
concrete with fly ash for dam applications. International
Journal of Concrete Structures and Materials 1(1): 57-61.
Schrader, E.K. 1977. Roller-compacted
concrete. Materials & Structures 34(7): 413-417.
Shi, Y. & Fang, K.H. 2006. Strength
of roller compacted concrete. Key Engineering Materials 302-303(6):
398-402.
Song, Y.P., Wen, W. & Wang,
H.L. 2012. Analysis on compression-shear strength of roller
compacted concrete. Journal of Water Resources and Architectural
Engineering 6: 44-47.
SL352. 2006. Test Code for Hydraulic
Concrete. Beijing: China Waterpower Press.
SL678. 2014. Technical Guidelines
for Cemented Material Dams. Beijing: China Waterpower Press.
Wang, J., Yang, Y. & Chai, H.
2016. Strength of a roller compacted rockfill sandstone from
in-situ direct shear test. Soil Mechanics and Foundation
Engineering 53(1): 30-34.
Wang, W., Kou, S. & Xing, F.
2013. Deformation properties and direct shear of medium strength
concrete prepared with 100% recycled coarse aggregates. Construction
and Building Materials 48: 187-193.
Yuan, C.H., Zhou, J. & Min,
H. 2005. An experiment study of shearing strength of roller
compacted concrete (RCC). Soil Engineering and Foundation
19(5): 68-71.
Huan, Z.Q., Song, Y.P. & Wu,
Z.M. 2005. Numerical simulation of tensile failure at adjacent
concrete layers in RCC dams. Journal of Hydraulic Engineering
6: 680-686, 693.
Zhou, J.P. & Dang, L.C. 2011.
Hydraulic Design Manual. 5th Volume of Concrete Dams.
Beijing: China Waterpower Press. p. 380.
*Corresponding author;
email: lzw9958@163.com