Sains
Malaysiana 46(11)(2017): 2143-2148
http://dx.doi.org/10.17576/jsm-2017-4611-15
Influence of Air Supply
Velocity on Temperature Field in the Self Heating Process of
Coal
(Pengaruh Halaju
Bekalan Udara pada Bidang Suhu dalam Proses Pemanasan Sendiri
Arang Batu)
SHUANGLIN SONG1,2, SHUGANG
WANG1*, YUNTAO LIANG2, XIAOCHEN LI1
& QI LIN1
1Faculty of Infrastructure Engineering,
Dalian University of Technology, Dalian 116024, China
2State Key Laboratory of Coal Mine
Safety Technology, CCTEG Shenyang Research Institute
Shenyang,
110016, China
Received:
15 January 2017/Accepted: 21 May 2017
ABSTRACT
The air supply velocity is an important factor affecting the spontaneous
combustion of coal. The appropriate air velocity can not only
provide the oxygen required for the oxidation reaction, but
maintains the good heat storage environment. Therefore, it is
necessary to study the influence of the actual air velocity
in the pore space on the self-heating process of coal particles.
This paper focuses on studying the real space piled up by spherical
particles. CFD
simulation software is used to establish
the numerical model from pore scale. Good fitness of the simulation
results with the existing results verifies the feasibility of
the calculation method. Later, the calculation conditions are
changed to calculate and analyze the velocity field and the
temperature field for self-heating of some particles (the surface
of the particles is at a certain temperature) and expound the
effect of different air supply velocities on gathering and dissipating
the heat.
Keywords: Coal self-heating; flow field; pore scale;
self-heating point; temperature field
ABSTRAK
Halaju bekalan udara adalah faktor penting yang mempengaruhi pembakaran
spontan arang batu. Halaju udara yang sesuai bukan sahaja dapat
memberikan oksigen yang diperlukan untuk reaksi pengoksidaan,
tetapi mengekalkan persekitaran penyimpanan haba yang baik.
Oleh itu, adalah perlu untuk mengkaji pengaruh halaju udara
sebenar di ruang liang pada proses pemanasan sendiri zarah arang
batu. Makalah ini memberi tumpuan kepada mengkaji ruang sebenar
yang ditimbun oleh zarah sfera. Perisian simulasi CFD digunakan untuk menubuhkan model berangka daripada skala
liang. Kesesuaian yang baik daripada keputusan simulasi dengan
keputusan sedia ada mengesahkan kelayakan kaedah pengiraan yang
digunakan. Kemudian, keadaan pengiraan diubah untuk mengira
dan menganalisis medan halaju dan medan suhu untuk pemanasan
sendiri beberapa zarah (contohnya permukaan zarah berada pada
suhu tertentu) dan menjelaskan kesan halangan bekalan udara
yang berlainan pada pengumpulan dan menghilangkan haba.
Kata
kunci: Bidang aliran; medan suhu; pemanasan sendiri arang batu;
skala lubang; titik pemanasan sendiri
REFERENCES
Achenbach, E. 1995.
Heat and flow characteristics of packed beds. Experimental
Thermal and Fluid Science 10: 17-27.
Ahamed, A.J. & Loganathan, K., 2017. Water quality concern in
the Amaravathi River Basin of Karur district: A view at heavy
metal concentration and their interrelationships using geostatistical
and multivariate analysis. Geology, Ecology, and Landscapes
1(1): 19-36.
Deng, J., Xu, J-C, & Wang, H-Q.
2002. Numerical simulation study on the spontaneous combustion
process of the column coal sample. Journal of Liaoning Technical
University (Natural Science Edition) 21: 129-132.
Dixon, A.G., Taskin, M.E., Nijemeisland,
M. & Stitt, E.H. 2011. Systematic mesh development for 3D
CFD simulation of fixed beds: Single sphere study. Computers
and Chemical Engineering 35(7): 1171-1185.
Guardo, A., Coussirat, M., Larrayoz,
M.A., Recasens, F. & Egusquiva, E. 2004. CFD flow and heat
transfer in nonregular packings for fixed bed equipment design.
Industrial & Engineering Chemistry Research 43(22):
7049-7056.
Jiang, P.X. & Lu, X.C. 2006.
Numerical simulation of fluid flow and convection heat transfer
in sintered porous plate channels. International Journal
of Heat and Mass Transfer 49(9-10): 1685-1695.
Jolls, K.R. & Hanratty, T.J.
1966. Transition to turbulence for flow through a dumped bed
of spheres. Chemical Engineering Science 21: 1185-90.
Krishnaswamy, S., Bhat, S. &
Gunn, R.D. 1996. Low-temperature oxidation of coal. Fuel
75: 333-362.
Noraini, T., Ruzi, A.R., Ismail,
B.S., Ummu Hani, B., Sahimi, S. & Azeyanty, J.A. 2016. Petiole
vascular bundles and its taxonomic value in the tribe Dipterocarpeae
(Dipterocarpaceae) Sains Malaysiana 45(2): 247-253.
Patankar, S.V. 1988. Numerical Heat Transfer and Fluid Flow (New
York: Taylor & Francis. pp. 13-16.
Sardar, M.S., Zafar, S. & Farahani,
M.R. 2017. Computing sanskruti index of the polycyclic aromatic
hydrocarbons. Geology, Ecology, and Landscapes 1(1):
37-40.
Tobiś, J. & Ziółkowski,
D. 1988. Modelling of heat transfer at the wall of a packed-bed
apparatus. Chemical Engineering Science 43: 3031-3036.
Wakao, N. & Funazkri, T. 1978.
Effect of fluid dispersion coefficients on particle-to-fluid
mass transfer coefficients in packed beds: Correlation of Sherwood
numbers. Chemical Engineering Science 33: 1375-1384.
Wu, C.Y., Ferng, Y.M., Chieng, C.C.
& Liu, C.C. 2010. Investigating the advantages and disadvantages
of realistic approach and porous approach for closely packed
pebbles in CFD simulation. Nuclear Engineering and Design
240: 1151-1159.
Xu, J. & Wang, H. 2002. The
neural network prediction method for the limit parameters of
coal self-ignition. Journal of China Coal Society 27:
366-370.
Yuan, L. & Smith, A.C. 2009.
CFD modeling of spontaneous heating in a large-scale coal chamber.
Journal of Loss Prevention in the Process Industries 22:
426-433.
*Corresponding author;
email: sgwang@dlut.edu.cn