Sains
Malaysiana 46(11)(2017): 2163-2167
http://dx.doi.org/10.17576/jsm-2017-4611-17
The
Application of Fractal Dimension on Capillary Pressure Curve
to Evaluate the Tight Sandstone
(Aplikasi
Dimensi Fraktal ke atas Lengkung Tekanan Kapilari untuk Menilai
Batu Pasir Padat)
CHUNHUA GUO1, YU YANG2*,
PING YAN2, RUILI ZHOU3 & XIAODONG
PENG4
1College of Environment and Civil
Engineering, Chengdu University of Technology, Chengdu 610059,
China
2State Key Laboratory of Oil and
Gas Reservoir Geology and Exploitation, Chengdu University
of Technology,
Chengdu 610059, China
3Petro-Engineering Research Institute
of North China Oil and Gas Branch, Sinopec, Zhengzhou 450006,
China
4Research Institute of Zhanjiang
Branch, CNOOC Energy Technology & Services Co. Zhanjiang
524057, China
Received:
6 January 2017/Accepted: 12 June 2017
ABSTRACT
The rock of gas tight reservoir
is more heterogeneous than that of conventional sandstone reservoir
and is more prone to water-blockage because of the invasion
of operation fluid. This paper presented a new approach for
the analysis of the capillary pressure curve for tight gas reservoir.
Herein, the saturation equation with fractal dimension proved
the previous observation that the log-log plot of capillary
pressure against water saturation is a straight line, which
is quite different from the popular observation by Corey’s correlation.
How to transform the capillary pressure curve to relative permeability
curve was also discussed with fractal dimension. The fractal
dimension of capillary pressure, which is not only an indication
of heterogeneity, can also reveal the potential water blocks
in tight gas wells. If the rock has higher fractal dimension,
being at the same water saturation, the capillary pressure will
be higher and the relative permeability of water will be smaller,
which means higher injection pressure is required to displace
the trapped water in reservoir. It is suggested that for the
tight gas pay zone with higher fractal dimension, more precautions
should be taken to prevent the water trapping during drilling
or stimulating operation.
Keyword: Capillary pressure
curve; relative permeability; tight sandstone; water trapping
ABSTRAK
Batuan di takungan kedap gas
lebih heterogen daripada takungan batu pasir konvensional dan
lebih cenderung kepada penahanan air kerana pencerobohan daripada
cecair operasi. Kertas ini mengemukakan pendekatan baru untuk
analisis lengkung tekanan kapilari takungan kedap gas. Oleh
itu persamaan penepuan dengan dimensi fraktal membuktikan pemerhatian
yang lepas bahawa plot log-log tekanan kapilari terhadap air
penepuan adalah garis lurus dan agak berbeza daripada pemerhatian
popular oleh Pekali Corey. Bagaimana mengubah lengkung tekanan
kapilari untuk ketelusan bandingan lengkung juga dibincangkan
dengan dimensi fraktal. Dimensi fraktal tekanan kapilari bukan
hanya sebagai petunjuk kontra, juga boleh mendedahkan potensi
blok air dalam telaga gas yang padat. Jika batuan mempunyai
dimensi fraktal yang tinggi pada penepuan air yang sama, tekanan
kapilari akan menjadi tinggi dan ketertelapan relatif air akan
menjadi kecil yang bermaksud tekanan pancutan yang tinggi diperlukan
untuk menggantikan air yang terperangkap dalam takungan. Adalah
disarankan agar zon kaksa kedap gas dengan dimensi fraktal yang
lebih tinggi memerlukan lebih banyak langkah keselamatan untuk
mencegah air daripada terperangkap semasa penggerudian atau
operasi perangsang.
Kata kunci: Batu pasir padat; ketertelapan relatif; lengkung tekanan
kapilari; perangkap air
REFERENCES
Angulo, R. & Ortiz, N. 1992.
Fractal Dimensions from Mercury Intrusion Capillary Tests.
Caracas, Venezuelas: Society of Petroleum Engineers, March 8-11.
Bennion, D.B., Bietz, R.F., Thomas,
F.B. & Cimolai, M.P. 1994. Reductions in the productivity
of oil and low permeability gas reservoirs due to aqueous phase
trapping. Journal of Canadian Petroleum Technology 33(9):
PETSOC 94-09-05.
Brooks, R.H. & Corey, A.T. 1966.
Properties of porous materials affecting fluids flow. Journal
of Injection and Drainage Division, Proceedings of ASCE
92, No. IR2: 61.
He, C.Z. & Hua, M.Q. 1998. Fractal
geometry description of reservoir pore structure. Oil &
Gas Geology 19(1): 15-23.
Khairiah Haji Badri & Muhammad
Syukri Ngah. 2015. A mini scale batch reactor for the production
of palm‑based polyol. Sains Malaysiana 44(6): 861-867.
Krohn, C.E. 1988. Fractal measurements
of sandstone, shale and carbonate. Geophys. Res. 93(4):
3297-3305.
Lekia, S.D.L. & Evans, R.D.
1988. Characterization of Naturally Fractured Lenticular
Tight Gas Sand Reservoir - A Reservoir Simulation Approach.
University of Okalahoma School of Petroleum and Geological Engineering
Research Report, Norman, Okla.
Mandelbrot, B.B. 1982. The Fractal
Geometry of Nature. San Francisco: Freeman. pp. 157-161.
Penny, G.S., Conway, M.W. &
Briscoe, J.E. 1983. Enhanced Load Recovery Technique Improves
Stimulation Results. SPE paper 12149 presented at the 1983
Annual Technical Conference and Exhibition, San Francisco, Oct.
SPE-12149-MS.
Purcell, W.R. 1949. Capillary pressures-their
measurement using mercury and the calculation of permeability
the reform. Trans AIMME 186: 39-48.
Wang, J.D., Zeng, Y.J., Xu, Y.J.
& Feng, K.Q. 2017. Analysis of the influence of tunnel portal
section construction on slope stability. Geology, Ecology,
and Landscapes 1(1): 56-65.
Wells, J.D. & Amaefule, J.O.
1985. Capillary Pressure and Permeability Relationships in
Tight Gas Sands. Paper SPE/DOE 13879, Proceedings of the
1985 SPE/DOE Joint Symposium on Low Permeability Gas Reservoir,
Denver, Colo, May 19-22.
Yang, Y., He, C.Z. & Lin, F.
2015. ‘Comments on Reply to comments on’ Analytical derivation
of Brooks-Corey type capillary pressure models using fractal
geometry and evaluation of rock heterogeneity. Journal of
Petroleum Science and Engineering 133: 713-715.
Zhen, S. & Gao, W.M. 2017. Geological
tourist route planning of Henan province based on geological
relics zoning. Geology, Ecology, and Landscapes 1(1):
66-69.
*Corresponding author;
email: yangyu@cdut.cn