Sains Malaysiana 46(11)(2017): 2215-2221

http://dx.doi.org/10.17576/jsm-2017-4611-23

 

Association Rules between the Microstructure and Physical Mechanical Properties of Rock-mass under Coupled Effect of Freeze-thaw Cycles and Large Temperature Difference

(Peraturan Kaitan antara Mikrostruktur dan Sifat Mekanik Fizikal Jisim Batu di bawah Kesan Berganding Kitar Beku-Cair dan Perbezaan Suhu yang Besar)

 

HAIBO JIANG, ZUGUO MO, XIONGBIN HOU & HAIJUAN WANG*

 

College of Water & Architectural Engineering,Shihezi University, Shihezi 832000, China

 

Received: 12 January 2017/Accepted: 28 May 2017

 

ABSTRACT

 

The mechanical properties of fractured rock mass are largely dependent on the fracture structure under the coupling of freeze-thaw cycles and large temperature difference. Based on the traditional macroscopic continuum theory, the thermal and mechanical model and the corresponding theories ignore the material internal structure characteristics, which add difficulty in describing the mesoscopic thermal and mechanical behavior of the fractured rock mass among different phases. In order to uncover the inherent relationship and laws among the internal crack development, structural change and the physical and mechanical properties of rock under strong cold and frost weathering in cold area, typical granite and sandstone in cold region were analyzed in laboratory tests. The SEM scanning technology was introduced to record the microstructural change of rock samples subject to freeze-thaw cycles and large temperature difference. Association rules between the microstructure and the physical mechanical properties of rock mass were analyzed. The results indicated that, with the increase of the cyclic number, the macroscopic physical and mechanical indexes and the microscopic fracture index of granite and sandstone continuously and gradually deteriorate. The width of original micro crack continues to expand and extend and new local micro cracks are generated and continue to expand. The fracture area and width of the rock increase and the strength of the rock is continuously damaged. In particular, the strength and elastic modulus of granite decrease by 20.2% and 33.36%, respectively; the strength and elastic modulus of sandstone decrease by 33.4% and 36.43%, respectively.

 

Keywords: Association rules; fractured rock mass; freeze-thaw cycle; large temperature difference; mechanical properties; microstructure

 

ABSTRAK

Sifat mekanik jisim batuan retak bergantung kepada struktur retak di bawah gandingan kitar-beku-cair dan perbezaan suhu yang besar. Berdasarkan teori tradisi kontinum makroskopi, model terma dan mekanik serta teori berkaitan mengabaikan ciri struktur bahan dalaman yang menambah kesukaran dalam menerangkan terma mesoskopi dan tingkah laku mekanik jisim batuan retak dalam fasa berbeza. Untuk menunjukkan wujud hubungan inheren serta hukum antara pembangunan retak dalaman, perubahan struktur serta sifat fizikal dan mekanik batuan dalam cuaca sejuk kuat dan fros di kawasan sejuk, granit dan batu pasir tipikal di rantau sejuk dianalisis dalam ujian makmal. Teknologi imbasan SEM digunakan untuk merakam perubahan mikrostruktur sampel batuan tertakluk kepada kitar-beku-cair dan perbezaan suhu yang besar. Peraturan kaitan antara sifat mikrostruktur dan fizikal mekanik jisim batu dianalisis. Keputusan menunjukkan dengan peningkatan bilangan kitaran, indeks fizikal dan mekanik makroskopi serta indeks granit mikroskopi retak dan batu pasir secara berterusan beransur-ansur merosot. Lebar retak mikro asal terus melebar dan meningkat dan keretakan mikro baru dihasilkan dan terus melebar. Kawasan retak dan kelebaran batuan meningkat dan kekuatan batuan berterusan rosak. Secara khususnya, modulus kekuatan dan elastik granit masing-masing menurun sebanyak 20.2% dan 33.36%; modulus kekuatan dan elastik batu pasir masing-masing menurun sebanyak 33.4% dan 36.43%.

 

Kata kunci: Jisim batu retak; kitar-beku-cair; mikrostruktur; perbezaan suhu yang besar; sifat mekanik; peraturan kaitan

REFERENCES

Akagawa, S. & Fukuda, M. 1991. Frost heave mechanism in welded tuff. Permafrost and Periglacial Processes 2(4): 301-309.

Atiqah, A., Syafawanie, A., Syafiqah, A., Izhar, I., Zarif, M., Abdelazim, A., Syafiq, A. & Wei, O.Q. 2017. Hydrogeological and environmental study of Sungai Serai, Hulu Langat. Pakistan Journal of Geology 1(1): 8-11.

Chen, W.Z., Tan, X.J., Yu, H.D., Yuan, K.K. & Li, S.C. 2011. Advance and review on thermo-hydro-mechanical characteristics of rock mass under condition of low temperature and freeze-thaw cycles. Chinese Journal of Rock Mechanics and Engineering 30(7): 1318-1336.

Del Roa, L.M., Lopez, F., Esteban, F.J., Tejado, J.J., Mota, M.I., Gonzalez, I., Ramos, A. & San Emeterio, J.L. 2005. Ultrasonic study of alteration processes in granites caused by freezing and thawing. IEEE Ultrasonics Symposium l: 415-418.

Deng, H.W., Tian, W.G., Zhou, K.P. & Li, J.L. 2013. Progress in freezing-thawing rock mechanics during the period of 2001 to 2012. Science & Technology Review 31(24): 74-79.

Fatih, B. 2012. Predicting mechanical strength loss of natural stones after freeze-thaw in cold regions. Cold Regions Science and Technology 83-84: 98-102.

Kang, Y., Liu, Q. & Huang, S. 2013. A fully coupled thermo-hydro-mechanical model for rock mass under freezing/thawing condition. Cold Regions Science and Technology 95(1): 19-26.

Konrad, J.M. & Morgenstern, N.R. 1982. Effects of applied pressure on freezing soil. Canadian Geotechnical Journal 19: 494-505.

Lai, Y., Xu, X., Dong, Y. & Li, S.Y. 2013. Present situation and prospect of mechanical research on frozen soils in China. Cold Regions Science and Technology 87: 6-18.

Lai, Y.M., Zhang, M.Y. & Li, S.Y. 2009. Theory and Application of Cold Regions Engineering. Beijing: Science Press.

Liu, H., Niu, F.J., Xu, Z.Y., Lin, Z.J. & Xu, J. 2012. Acoustic experimental study of two types of rock from the Tibetan Plateau under the condition of freeze-thaw cycles. Sciences in Cold and Arid Regions 4(1): 21-27.

Liu, Q.S., Kang, Y.S., Huang, X. & Xu, C.Z. 2012b. Critical problems of freeze-thaw damage in fractured rock and their research status. Rock and Soil Mechanics 33(4): 972-978.

Ma, W. & Wang, D. 2012. Studies on frozen soil mechanics in China in past 50 years and their prospect. Chinese Journal of Geotechnical Engineering 34(4): 625-640.

Martínez- Martínez, J., Benavente, D., Gomez-Heras, M., Marco-Costaño, L. & García-del-Cura, M.A. 2013. Non-linear decay of building stones during freeze-thaw weathering processes. Construction and Building Materials 38: 443-454.

Neaupane, K.M., Yamabe, T. & Yoshinaka, R. 1999. Simulation of a fully coupled thermo-hydro-mechanical system in freezing and thawing rock. International Journal of Rock Mechanics and Mining Sciences 36(5): 563-580.

Shuib, M.K., Manap, M.A., Tongkul, F., Abd Rahim, I., Jamaludin, T.A., Surip, N., Abu Bakar, R., Che Abas, M.R., Che Musa, R. & Ahmad, A. 2017. Active faults in Peninsular Malaysia with emphasis on active geomorphic features of Bukit Tinggi region. Malaysian Journal of Geoscience 1(1): 13-26.

Sondergld, C.H. & Rai, C.S. 2007. Velocity and resistivity changes during freeze-thaw cycles in Berea sandstone. Geophysics 72(2): 99-105.

Syazwanee, M.F.M.G., Noormasshela, U.A., Nor Azwady, A.A., Rusea, G. & Muskhazli, M. 2016. Bacillus thuringiensis entomotoxicity activity in wastewater sludge-culture medium towards Bactrocera dorsalis and their histopathological assessment. Sains Malaysiana 45(4): 589-594.

Tan, X.J., Chen, W.Z., Yang, J.P. & Cao, J.J. 2011. Laboratory investigations on the mechanical properties degradation of granite under freeze -thaw cycles. Cold Regions Science and Technology 68(3): 130-138.

Wettlaufer, J.S. & Worster, M.G. 2006. Preemelting dynamics. Annu. Review of Fluid Mechanics 38: 427-452.

Yamabe, T. & Neaupane, K.M. 2001. Determination of some thermo mechanical properties of Sirahama sandstone under subzero temperature condition. International Journal of Rock Mechanics and Mining Sciences 38(7): 1029-1034.

Yavuz, H. 2011. Effect of freeze-thaw and thermal shock weathering on the physical and mechanical properties of an andesite stone. Bulletin of Engineering Geology and the Environment 70(2): l87-192.

 

*Corresponding author; email: haishuidelan1314@sina.com

 

 

 

 

 

 

 

 

 

 

previous