Sains
Malaysiana 46(11)(2017): 2215-2221
http://dx.doi.org/10.17576/jsm-2017-4611-23
Association
Rules between the Microstructure and Physical Mechanical Properties
of Rock-mass under Coupled Effect of Freeze-thaw Cycles and
Large Temperature Difference
(Peraturan
Kaitan antara Mikrostruktur dan Sifat Mekanik Fizikal Jisim
Batu di bawah Kesan Berganding Kitar Beku-Cair dan Perbezaan
Suhu yang Besar)
HAIBO JIANG, ZUGUO MO, XIONGBIN
HOU & HAIJUAN WANG*
College of Water & Architectural Engineering,Shihezi University,
Shihezi 832000, China
Received: 12 January 2017/Accepted: 28 May 2017
ABSTRACT
The mechanical properties of fractured rock mass are largely dependent
on the fracture structure under the coupling of freeze-thaw
cycles and large temperature difference. Based on the traditional
macroscopic continuum theory, the thermal and mechanical model
and the corresponding theories ignore the material internal
structure characteristics, which add difficulty in describing
the mesoscopic thermal and mechanical behavior of the fractured
rock mass among different phases. In order to uncover the inherent
relationship and laws among the internal crack development,
structural change and the physical and mechanical properties
of rock under strong cold and frost weathering in cold area,
typical granite and sandstone in cold region were analyzed in
laboratory tests. The SEM scanning technology was introduced
to record the microstructural change of rock samples subject
to freeze-thaw cycles and large temperature difference. Association
rules between the microstructure and the physical mechanical
properties of rock mass were analyzed. The results indicated
that, with the increase of the cyclic number, the macroscopic
physical and mechanical indexes and the microscopic fracture
index of granite and sandstone continuously and gradually deteriorate.
The width of original micro crack continues to expand and extend
and new local micro cracks are generated and continue to expand.
The fracture area and width of the rock increase and the strength
of the rock is continuously damaged. In particular, the strength
and elastic modulus of granite decrease by 20.2% and 33.36%,
respectively; the strength and elastic modulus of sandstone
decrease by 33.4% and 36.43%, respectively.
Keywords: Association
rules; fractured rock mass; freeze-thaw cycle; large temperature
difference; mechanical properties; microstructure
ABSTRAK
Sifat mekanik jisim batuan retak bergantung kepada struktur retak
di bawah gandingan kitar-beku-cair dan perbezaan suhu yang besar.
Berdasarkan teori tradisi kontinum makroskopi, model terma dan
mekanik serta teori berkaitan mengabaikan ciri struktur bahan
dalaman yang menambah kesukaran dalam menerangkan terma mesoskopi
dan tingkah laku mekanik jisim batuan retak dalam fasa berbeza.
Untuk menunjukkan wujud hubungan inheren serta hukum antara
pembangunan retak dalaman, perubahan struktur serta sifat fizikal
dan mekanik batuan dalam cuaca sejuk kuat dan fros di kawasan
sejuk, granit dan batu pasir tipikal di rantau sejuk dianalisis
dalam ujian makmal. Teknologi imbasan SEM digunakan untuk merakam
perubahan mikrostruktur sampel batuan tertakluk kepada kitar-beku-cair
dan perbezaan suhu yang besar. Peraturan kaitan antara sifat
mikrostruktur dan fizikal mekanik jisim batu dianalisis. Keputusan
menunjukkan dengan peningkatan bilangan kitaran, indeks fizikal
dan mekanik makroskopi serta indeks granit mikroskopi retak
dan batu pasir secara berterusan beransur-ansur merosot. Lebar
retak mikro asal terus melebar dan meningkat dan keretakan mikro
baru dihasilkan dan terus melebar. Kawasan retak dan kelebaran
batuan meningkat dan kekuatan batuan berterusan rosak. Secara
khususnya, modulus kekuatan dan elastik granit masing-masing
menurun sebanyak 20.2% dan 33.36%; modulus kekuatan dan elastik
batu pasir masing-masing menurun sebanyak 33.4% dan 36.43%.
Kata
kunci: Jisim batu retak; kitar-beku-cair; mikrostruktur; perbezaan
suhu yang besar; sifat mekanik; peraturan kaitan
REFERENCES
Akagawa, S. & Fukuda,
M. 1991. Frost heave mechanism in welded tuff. Permafrost
and Periglacial Processes 2(4): 301-309.
Atiqah, A., Syafawanie,
A., Syafiqah, A., Izhar, I., Zarif, M., Abdelazim, A., Syafiq,
A. & Wei, O.Q. 2017. Hydrogeological and environmental study
of Sungai Serai, Hulu Langat. Pakistan Journal of Geology
1(1): 8-11.
Chen, W.Z., Tan, X.J.,
Yu, H.D., Yuan, K.K. & Li, S.C. 2011. Advance and review
on thermo-hydro-mechanical characteristics of rock mass under
condition of low temperature and freeze-thaw cycles. Chinese
Journal of Rock Mechanics and Engineering 30(7): 1318-1336.
Del Roa, L.M., Lopez,
F., Esteban, F.J., Tejado, J.J., Mota, M.I., Gonzalez, I., Ramos,
A. & San Emeterio, J.L. 2005. Ultrasonic study of alteration
processes in granites caused by freezing and thawing. IEEE
Ultrasonics Symposium l: 415-418.
Deng, H.W., Tian, W.G.,
Zhou, K.P. & Li, J.L. 2013. Progress in freezing-thawing
rock mechanics during the period of 2001 to 2012. Science
& Technology Review 31(24): 74-79.
Fatih, B. 2012. Predicting
mechanical strength loss of natural stones after freeze-thaw
in cold regions. Cold Regions Science and Technology 83-84:
98-102.
Kang, Y., Liu, Q. &
Huang, S. 2013. A fully coupled thermo-hydro-mechanical model
for rock mass under freezing/thawing condition. Cold Regions
Science and Technology 95(1): 19-26.
Konrad, J.M. & Morgenstern,
N.R. 1982. Effects of applied pressure on freezing soil. Canadian
Geotechnical Journal 19: 494-505.
Lai, Y., Xu, X., Dong,
Y. & Li, S.Y. 2013. Present situation and prospect of mechanical
research on frozen soils in China. Cold Regions Science and
Technology 87: 6-18.
Lai, Y.M., Zhang, M.Y.
& Li, S.Y. 2009. Theory and Application of Cold Regions
Engineering. Beijing: Science Press.
Liu, H., Niu, F.J.,
Xu, Z.Y., Lin, Z.J. & Xu, J. 2012. Acoustic experimental
study of two types of rock from the Tibetan Plateau under the
condition of freeze-thaw cycles. Sciences in Cold and Arid
Regions 4(1): 21-27.
Liu, Q.S., Kang, Y.S.,
Huang, X. & Xu, C.Z. 2012b. Critical problems of freeze-thaw
damage in fractured rock and their research status. Rock
and Soil Mechanics 33(4): 972-978.
Ma, W. & Wang, D.
2012. Studies on frozen soil mechanics in China in past 50 years
and their prospect. Chinese Journal of Geotechnical Engineering
34(4): 625-640.
Martínez- Martínez,
J., Benavente, D., Gomez-Heras, M., Marco-Costaño, L. &
García-del-Cura, M.A. 2013. Non-linear decay of building stones
during freeze-thaw weathering processes. Construction and
Building Materials 38: 443-454.
Neaupane, K.M., Yamabe,
T. & Yoshinaka, R. 1999. Simulation of a fully coupled thermo-hydro-mechanical
system in freezing and thawing rock. International Journal
of Rock Mechanics and Mining Sciences 36(5): 563-580.
Shuib, M.K., Manap,
M.A., Tongkul, F., Abd Rahim, I., Jamaludin, T.A., Surip, N.,
Abu Bakar, R., Che Abas, M.R., Che Musa, R. & Ahmad, A.
2017. Active faults in Peninsular Malaysia with emphasis on
active geomorphic features of Bukit Tinggi region. Malaysian
Journal of Geoscience 1(1): 13-26.
Sondergld, C.H. &
Rai, C.S. 2007. Velocity and resistivity changes during freeze-thaw
cycles in Berea sandstone. Geophysics 72(2): 99-105.
Syazwanee, M.F.M.G.,
Noormasshela, U.A., Nor Azwady, A.A., Rusea, G. & Muskhazli,
M. 2016. Bacillus thuringiensis entomotoxicity activity
in wastewater sludge-culture medium towards Bactrocera dorsalis
and their histopathological assessment. Sains Malaysiana
45(4): 589-594.
Tan, X.J., Chen, W.Z.,
Yang, J.P. & Cao, J.J. 2011. Laboratory investigations on
the mechanical properties degradation of granite under freeze
-thaw cycles. Cold Regions Science and Technology 68(3):
130-138.
Wettlaufer, J.S. &
Worster, M.G. 2006. Preemelting dynamics. Annu. Review of
Fluid Mechanics 38: 427-452.
Yamabe, T. & Neaupane,
K.M. 2001. Determination of some thermo mechanical properties
of Sirahama sandstone under subzero temperature condition. International
Journal of Rock Mechanics and Mining Sciences 38(7): 1029-1034.
Yavuz, H. 2011. Effect
of freeze-thaw and thermal shock weathering on the physical
and mechanical properties of an andesite stone. Bulletin
of Engineering Geology and the Environment 70(2): l87-192.
*Corresponding
author; email: haishuidelan1314@sina.com