Sains Malaysiana 46(12)(2017): 2489–2496

http://dx.doi.org/10.17576/jsm-2017-4612-26

 

Performance of Palm Oil Clinker as a Bio-Filler with Hybrid Fillers in Intumescent Fire Protective Coatings for Steel

(Prestasi Arang Kelapa Sawit sebagai Pengisi Biologi dengan Pengisi Hibrid di dalam Lapisan Penahan Api untuk Keluli)

 

S.A.S. MUSTAPA & N.H. RAMLI SULONG*

 

Department of Civil Engineering, Faculty of Engineering, University of Malaya, Lembah Pantai,

50603 Kuala Lumpur, Federal Territory, Malaysia

 

Received: 24 January 2017/Accepted: 8 June 2017

 

ABSTRACT

Intumescent coatings are an effective method for fire protection of steel structures. The search for more environmental friendly intumescent coatings has led to the utilization of palm oil clinker (POC) as a bio-filler in solvent-borne intumescent coatings in order to improve fire protection performance, mechanical strength and water resistance of steel structures. In this research, POC and hybrid fillers are mixed with an acrylic binder and then blended with flame-retardant additives in order to produce intumescent coatings. The samples were tested using Bunsen burner test, thermogravimetry analysis, surface spread of flame test, field emission scanning electron microscopy, static immersion test, and adhesion strength test. It was found that the optimum composition of POC and hybrid fillers gives the best fire protection performance with the lowest equilibrium temperature (171.3°C), high thermal stability, good water resistance and excellent mechanical properties. The results of the surface spread of flame test show that Sample A3, A4, and A6 were classified as Class 1, which is the best classification. For Sample A6 (a hybrid formulation), the addition of aluminium hydroxide gives better water resistance with the lowest rate of weight change (<0.2%), while the addition of magnesium hydroxide enhances the bonding strength of the coating up to 125% compared with Sample A1 which only has a single filler POC. It can be concluded that the optimum composition of POC and hybrid fillers results in intumescent coating with the greatest fire protection performance.

 

Keywords: Fire protection; hybrid fillers; intumescent coatings; palm oil clinker; solvent-borne

 

ABSTRAK

Lapisan penahan api merupakan kaedah yang berkesan dalam perlindungan api bagi struktur keluli. Pencarian lapisan penahan api yang lebih mesra alam telah membawa kepada penggunaan arang kelapa sawit (POC) sebagai bahan pengisi biologi di dalam lapisan penahan api berasaskan pelarut bagi meningkatkan kadar kecekapan perlindungan api, kekuatan mekanik dan daya ketahanan terhadap air pada struktur keluli. Dalam kajian ini, POC dan bahan pengisi hibrid dirumuskan bersama bahan pengikat akrilik dan dicampurkan dengan bahan tambahan tertentu untuk menghasilkan lapisan penahan api. Semua sampel diuji dengan menggunakan ujian penunu Bunsen, analisis termogravimetri, ujian penyebaran api, mikroskopi elektron imbasan pancaran medan, daya tahan air dan daya lekatan. Didapati bahawa penggunaan optimum POC bersama bahan pengisi hibrid menunjukkan kecekapan perlindungan api terbaik dengan suhu keseimbangan terendah (171.3°C), kestabilan haba yang tinggi, daya ketahanan terhadap air dan kekuatan mekanik yang bagus. Ujian penyebaran api menunjukkan Sampel A3, A4 dan A6 berada di Kelas 1 iaitu kelas terbaik. Bagi Sampel A6 (rumusan dengan bahan pengisi hibrid), penambahan aluminium hidroksida meningkatkan ketahanan terhadap air dengan menunjukkan kadar perubahan berat yang paling rendah (<0.2%), manakala penambahan magnesium hidroksida meningkatkan daya lekatan lapisan penahan api sehingga 125% berbanding dengan Sampel A1 yang mempunyai bahan pengisi tunggal POC. Kesimpulannya, komposisi optimum POC dan bahan pengisi hibrid memberikan kesan yang terbaik dalam kecekapan perlindungan api bagi lapisan penahan api.

Kata kunci: Arang kelapa sawit; bahan pengikat pelarut; bahan pengisi hibrid; lapisan penahan api; perlindungan api

REFERENCES

Ahmmad, R., Jumaat, M.Z., Alengaram, U.J., Bahri, S., Rehman, M.A. & Hashim, H. 2016. Performance evaluation of palm oil clinker as coarse aggregate in high strength lightweight concrete. Journal of Cleaner Production 112(Part 1): 566- 574.

Bodzay, B., Bocz, K., Barkai, Z. & Marosi, G. 2011. Influence of rheological additives on char formation and fire resistance of intumescent coatings. Polymer Degradation and Stability 96(3): 355-362.

Dai, X.H., Wang, Y.C. & Bailey, C.G. 2009. Effects of partial fire protection on temperature developments in steel joints protected by intumescent coating. Fire Safety Journal 44(3): 376-386.

Duquesne, S., Magnet, S., Jama, C. & Delobel, R. 2004. Intumescent paints: Fire protective coatings for metallic substrates. Surface & Coatings Technology 180: 302-307.

Duquesne, S., Magnet, S., Jama, C. & Delobel, R. 2005. Thermoplastic resins for thin film intumescent coatings - towards a better understanding of their effect on intumescence efficiency. Polymer Degradation and Stability 88(1): 63-69.

Enescu, D., Frache, A., Lavaselli, M., Monticelli, O. & Marino, F. 2013. Novel phosphorous-nitrogen intumescent flame retardant system. Its effects on flame retardancy and thermal properties of polypropylene. Polymer Degradation and Stability 98(1): 297-305.

Harlan Laboratories Ltd. UK. 2010. Aluminium Hydroxide. Determination of Water Solubility. Project No.: 2962/0003. UK. A Study Conducted at the Request of the Aluminium REACH Consortium.

Hornsby, P.R. & Watson, C.L. 1990. A study of the mechanism of flame retardance and smoke suppression in polymers filled with magnesium hydroxide. Polymer Degradation and Stability 30(1): 73-87.

Jimenez, M., Duquesne, S. & Bourbigot, S. 2006a. Characterization of the performance of an intumescent fire protective coating. Surface & Coatings Technology 201(3-4): 979-987.

Jimenez, M., Duquesne, S. & Bourbigot, S. 2006b. Intumescent fire protective coating: Toward a better understanding of their mechanism of action. Thermochimica Acta 449(1-2): 16-26.

Jumaat, M.Z., Alengaram, U.J., Ahmmad, R., Bahri, S. & Islam, A.B.M.S. 2015. Characteristics of palm oil clinker as replacement for oil palm shell in lightweight concrete subjected to elevated temperature. Construction and Building Materials 101: 942-951.

Liang, S.Y., Neisius, N.M. & Gaan, S. 2013. Recent developments in flame retardant polymeric coatings. Progress in Organic Coatings 76(11): 1642-1665.

Norgaard, K.P., Dam-Johansen, K., Catala, P. & Kiil, S. 2013. Investigation of char strength and expansion properties of an intumescent coating exposed to rapid heating rates. Progress in Organic Coatings 76(12): 1851-1857.

Pan, L.L., Li, G.Y., Su, Y.C. & Lian, J.S. 2012. Fire retardant mechanism analysis between ammonium polyphosphate and triphenyl phosphate in unsaturated polyester resin. Polymer Degradation and Stability 97(9): 1801-1806.

Price, D., Pyrah, K., Hull, T.R., Milnes, G.J., Ebdon, J.R., Hunt, B.J. & Joseph, P. 2002. Flame retardance of poly(methyl methacrylate) modified with phosphorus-containing compounds. Polymer Degradation and Stability 77(2): 227-233.

Wang, G.J. & Yang, J.Y. 2010. Influences of binder on fire protection and anticorrosion properties of intumescent fire resistive coating for steel structure. Surface & Coatings Technology 204(8): 1186-1192.

Wang, Z.Y., Han, E.H. & Ke, W. 2006. Effect of nanoparticles on the improvement in fire-resistant and anti-ageing properties of flame-retardant coating. Surface & Coatings Technology 200(20-21): 5706-5716.

Yeh, J.M., Huang, H.Y., Chen, C.L., Su, W.F. & Yu, Y.H. 2006. Siloxane-modified epoxy resin-clay nanocomposite coatings with advanced anticorrosive properties prepared by a solution dispersion approach. Surface & Coatings Technology 200(8): 2753-2763.

Yew, M.C. 2011. Investigation on water-borne intumescent fire protective coatings for steel. Master Thesis. University of Malaya, Kuala Lumpur, Malaysia (Unpublished).

Yew, M.C. & Sulong, N.H.R. 2012. Fire-resistive performance of intumescent flame-retardant coatings for steel. Materials Design 34: 719-724.

Yew, M.C. & Ramli Sulong, N.H. 2011. Effect of epoxy binder on fire protection and bonding strength of intumescent fire protective coating for steel. Advanced Materials Research 168-170: 1228-1232.

Yew, M.C., Sulong, N.H.R., Yew, M.K., Amalina, M.A. & Johan, M.R. 2015. Influences of flame-retardant fillers on fire protection and mechanical properties of intumescent coatings. Progress in Organic Coatings 78: 59-66.

Yew, M.C., Sulong, N.H.R., Yew, M.K., Amalina, M.A. & Johan, M.R. 2014. Investigation on solvent-borne intumescent flame-retardant coatings for steel. Materials Research Innovations 18: 384-388.

Yew, M.C., Sulong, N.H.R., Yew, M.K., Amalina, M.A. & Johan, M.R. 2013. The formulation and study of the thermal stability and mechanical properties of an acrylic coating using chicken eggshell as a novel bio-filler. Progress in Organic Coatings 76(11): 1549-1555.

 

 

*Corresponding author; email: hafizah_ramli@um.edu.my

 

 

 

 

previous