Sains Malaysiana 46(12)(2017): 2489–2496
http://dx.doi.org/10.17576/jsm-2017-4612-26
Performance of Palm Oil Clinker as a Bio-Filler
with Hybrid Fillers in Intumescent Fire Protective Coatings
for Steel
(Prestasi Arang Kelapa Sawit
sebagai Pengisi
Biologi dengan Pengisi Hibrid di dalam Lapisan Penahan Api untuk Keluli)
S.A.S.
MUSTAPA
& N.H. RAMLI
SULONG*
Department
of Civil Engineering, Faculty of Engineering, University of
Malaya, Lembah Pantai,
50603
Kuala Lumpur, Federal Territory, Malaysia
Received: 24 January 2017/Accepted:
8 June 2017
ABSTRACT
Intumescent coatings are an
effective method for fire protection of steel structures. The
search for more environmental friendly intumescent coatings
has led to the utilization of palm oil clinker (POC) as a bio-filler in solvent-borne intumescent coatings
in order to improve fire protection performance, mechanical
strength and water resistance of steel structures. In this research,
POC and
hybrid fillers are mixed with an acrylic binder and then blended
with flame-retardant additives in order to produce intumescent
coatings. The samples were tested using Bunsen burner test,
thermogravimetry analysis, surface
spread of flame test, field emission scanning electron microscopy,
static immersion test, and adhesion strength test. It was found
that the optimum composition of POC and
hybrid fillers gives the best fire protection performance with
the lowest equilibrium temperature (171.3°C), high thermal stability,
good water resistance and excellent mechanical properties. The
results of the surface spread of flame test show that Sample
A3, A4, and A6 were classified as Class 1, which is the best
classification. For Sample A6 (a hybrid formulation), the addition
of aluminium hydroxide gives better
water resistance with the lowest rate of weight change (<0.2%),
while the addition of magnesium hydroxide enhances the bonding
strength of the coating up to 125% compared with Sample A1 which
only has a single filler POC. It can be concluded that the optimum composition of
POC
and hybrid fillers results in intumescent coating
with the greatest fire protection performance.
Keywords: Fire protection;
hybrid fillers; intumescent coatings; palm oil clinker; solvent-borne
ABSTRAK
Lapisan penahan api
merupakan kaedah
yang berkesan dalam perlindungan
api bagi
struktur keluli. Pencarian lapisan penahan api
yang lebih mesra
alam telah membawa
kepada penggunaan
arang kelapa sawit
(POC)
sebagai bahan
pengisi biologi di dalam lapisan penahan api berasaskan pelarut bagi meningkatkan
kadar kecekapan
perlindungan api, kekuatan mekanik dan daya ketahanan
terhadap air pada
struktur keluli. Dalam kajian ini,
POC
dan bahan
pengisi hibrid dirumuskan bersama bahan pengikat akrilik dan dicampurkan
dengan bahan
tambahan tertentu untuk menghasilkan lapisan penahan api. Semua
sampel diuji
dengan menggunakan ujian penunu Bunsen, analisis termogravimetri, ujian penyebaran api, mikroskopi
elektron imbasan
pancaran medan, daya tahan air dan daya lekatan.
Didapati bahawa
penggunaan optimum POC bersama
bahan pengisi
hibrid menunjukkan kecekapan perlindungan api terbaik
dengan suhu
keseimbangan terendah (171.3°C),
kestabilan haba
yang tinggi, daya ketahanan
terhadap air dan
kekuatan mekanik yang bagus. Ujian penyebaran
api menunjukkan
Sampel A3, A4 dan
A6 berada di Kelas 1 iaitu kelas terbaik.
Bagi Sampel
A6 (rumusan dengan bahan pengisi hibrid),
penambahan aluminium
hidroksida meningkatkan ketahanan terhadap air dengan menunjukkan kadar perubahan
berat yang paling rendah
(<0.2%), manakala penambahan
magnesium hidroksida meningkatkan
daya lekatan
lapisan penahan api sehingga 125% berbanding dengan Sampel A1 yang mempunyai bahan pengisi tunggal
POC.
Kesimpulannya, komposisi
optimum POC dan bahan
pengisi hibrid
memberikan kesan yang terbaik dalam kecekapan
perlindungan api
bagi lapisan
penahan api.
Kata kunci: Arang
kelapa sawit;
bahan pengikat pelarut; bahan pengisi hibrid; lapisan penahan api; perlindungan
api
REFERENCES
Ahmmad, R., Jumaat,
M.Z., Alengaram, U.J., Bahri,
S., Rehman, M.A. & Hashim,
H. 2016. Performance evaluation of palm oil
clinker as coarse aggregate in high strength lightweight concrete.
Journal of Cleaner Production 112(Part 1): 566- 574.
Bodzay, B.,
Bocz, K., Barkai,
Z. & Marosi, G. 2011. Influence
of rheological additives on char formation and fire resistance
of intumescent coatings. Polymer Degradation and Stability
96(3): 355-362.
Dai, X.H., Wang, Y.C. & Bailey, C.G. 2009. Effects of partial fire protection on temperature developments in
steel joints protected by intumescent coating. Fire
Safety Journal 44(3): 376-386.
Duquesne, S., Magnet, S., Jama, C. & Delobel,
R. 2004. Intumescent paints: Fire protective coatings for metallic substrates.
Surface & Coatings Technology 180: 302-307.
Duquesne, S., Magnet, S., Jama, C. & Delobel,
R. 2005. Thermoplastic resins for thin film intumescent coatings - towards
a better understanding of their effect on intumescence efficiency.
Polymer Degradation and Stability 88(1): 63-69.
Enescu, D.,
Frache, A., Lavaselli,
M., Monticelli, O. & Marino, F.
2013. Novel phosphorous-nitrogen intumescent flame retardant system.
Its effects on flame retardancy
and thermal properties of polypropylene. Polymer Degradation
and Stability 98(1): 297-305.
Harlan
Laboratories Ltd. UK. 2010. Aluminium
Hydroxide. Determination of Water Solubility. Project No.: 2962/0003. UK. A Study
Conducted at the Request of the Aluminium
REACH Consortium.
Hornsby, P.R. & Watson, C.L. 1990. A
study of the mechanism of flame retardance
and smoke suppression in polymers filled with magnesium hydroxide.
Polymer Degradation and Stability 30(1): 73-87.
Jimenez,
M., Duquesne, S. & Bourbigot,
S. 2006a. Characterization of the performance of an intumescent fire protective
coating. Surface & Coatings Technology 201(3-4):
979-987.
Jimenez,
M., Duquesne, S. & Bourbigot,
S. 2006b. Intumescent fire protective coating: Toward a better
understanding of their mechanism of action. Thermochimica
Acta 449(1-2): 16-26.
Jumaat, M.Z.,
Alengaram, U.J., Ahmmad,
R., Bahri, S. & Islam, A.B.M.S.
2015. Characteristics
of palm oil clinker as replacement for oil palm shell in lightweight
concrete subjected to elevated temperature. Construction
and Building Materials 101: 942-951.
Liang,
S.Y., Neisius, N.M. & Gaan,
S. 2013. Recent developments in flame retardant
polymeric coatings. Progress in Organic Coatings 76(11):
1642-1665.
Norgaard, K.P., Dam-Johansen, K., Catala, P. & Kiil, S. 2013.
Investigation of char strength and expansion properties of an
intumescent coating exposed to rapid heating rates. Progress
in Organic Coatings 76(12): 1851-1857.
Pan, L.L., Li, G.Y., Su, Y.C. & Lian,
J.S. 2012. Fire retardant mechanism analysis between ammonium
polyphosphate and triphenyl phosphate
in unsaturated polyester resin. Polymer Degradation
and Stability 97(9): 1801-1806.
Price,
D., Pyrah, K., Hull, T.R., Milnes,
G.J., Ebdon, J.R., Hunt, B.J. & Joseph, P. 2002. Flame retardance of poly(methyl methacrylate)
modified with phosphorus-containing compounds. Polymer Degradation
and Stability 77(2): 227-233.
Wang, G.J. & Yang, J.Y. 2010. Influences of binder on fire protection and anticorrosion properties
of intumescent fire resistive coating for steel structure.
Surface & Coatings Technology 204(8): 1186-1192.
Wang, Z.Y., Han, E.H. & Ke, W. 2006. Effect of nanoparticles on the improvement in fire-resistant and anti-ageing
properties of flame-retardant coating. Surface &
Coatings Technology 200(20-21): 5706-5716.
Yeh, J.M., Huang, H.Y.,
Chen, C.L., Su, W.F. & Yu, Y.H. 2006. Siloxane-modified epoxy
resin-clay nanocomposite coatings with advanced anticorrosive
properties prepared by a solution dispersion approach. Surface
& Coatings Technology 200(8): 2753-2763.
Yew, M.C. 2011. Investigation
on water-borne intumescent fire protective coatings for steel.
Master Thesis. University of Malaya, Kuala Lumpur, Malaysia
(Unpublished).
Yew, M.C. & Sulong, N.H.R. 2012. Fire-resistive performance of intumescent flame-retardant coatings
for steel. Materials Design 34: 719-724.
Yew, M.C. & Ramli Sulong, N.H. 2011. Effect
of epoxy binder on fire protection and bonding strength of intumescent
fire protective coating for steel. Advanced
Materials Research 168-170: 1228-1232.
Yew, M.C., Sulong, N.H.R., Yew, M.K., Amalina, M.A. & Johan, M.R. 2015. Influences of flame-retardant fillers on fire protection and mechanical
properties of intumescent coatings. Progress in Organic
Coatings 78: 59-66.
Yew, M.C., Sulong, N.H.R., Yew, M.K., Amalina, M.A. & Johan, M.R. 2014. Investigation on solvent-borne intumescent flame-retardant coatings
for steel. Materials Research Innovations 18:
384-388.
Yew,
M.C., Sulong, N.H.R., Yew, M.K., Amalina,
M.A. & Johan, M.R. 2013. The formulation and
study of the thermal stability and mechanical properties of
an acrylic coating using chicken eggshell as a novel bio-filler.
Progress in Organic Coatings 76(11): 1549-1555.
*Corresponding author;
email: hafizah_ramli@um.edu.my