Sains Malaysiana 46(12)(2017): 2523–2528
http://dx.doi.org/10.17576/jsm-2017-4612-30
Peramalan Bahan
Pencemar Ozon (O3) di Universiti
Pendidikan Sultan Idris, Tanjung Malim, Perak, MalaysiaMengikut
Monsun dengan Menggunakan Pendekatan Kalut
(Forecasting Ozone Pollutant (O3) in
Universiti Pendidikan Sultan Idris, Tanjung Malim,
Perak, Malaysia, based on Monsoon using Chaotic Approach)
WAN NUR
AFATEEN
BINTI WAN MOHD ZAIM*
& NOR ZILA ABD
HAMID
Jabatan Matematik, Fakulti Sains dan Matematik,
Universiti Pendidikan
Sultan Idris, 35900 Tanjung Malim,
Perak Darul Ridzuan, Malaysia
Received: 14 February 2017/Accepted: 7 June 2017
ABSTRAK
Peramalan bahan kepekatan
ozon (O3) adalah
sangat penting
kerana udara yang mengandungi O3 boleh menyebabkan pelbagai penyakit kronik seperti kanser dan asma. Kajian ini merupakan kajian
rintis dengan
menggunakan pendekaan kalut bagi meramal
kepekatan O3 di
kawasan pendidikan
di Malaysia. Data yang dikaji
merupakan siri masa O3
yang dicerap mengikut
jam di stesen yang terletak
di Universiti Pendidikan
Sultan Idris, Tanjung Malim,
Perak. Sebelum model peramalan
dibina, siri
masa diuji terlebih dahulu untuk mengenal
pasti sama
ada dinamik
kalut hadir ataupun
tidak. Pendekatan
kalut mempunyai dua langkah iaitu
pembinaan semula
ruang fasa dan
proses peramalan. Pembinaan semula
ruang fasa
memerlukan penetapan dua parameter terlebih dahulu iaitu masa tunda τ dan matra pembenaman m. Kedua-dua parameter tersebut masing-masing diperoleh daripada kaedah purata maklumat bersama dan kaedah
Cao. Melalui plot ruang
fasa dan
kaedah Cao, sifat kalut didapati hadir dalam siri
masa O3. Oleh itu, model peramalan
melalui pendekatan
kalut menggunakan kaedah penghampiran purata setempat dibina. Pendekatan kalut ini merupakan salah satu kaedah alternatif
yang boleh digunakan
untuk meramal siri
masa O3. Pekali korelasi adalah
dipilih sebagai
petunjuk prestasi bagi memberi gambaran
tentang kekuatan
hubungan antara nilai sebenar dengan
nilai peramalan.
Nilai pekali korelasi bagi siri masa O3 ketika Monsun Timur
Laut adalah
0.8921. Manakala, nilai pekali korelasi
ketika Monsun
Barat Daya adalah 0.9002. Diharap dengan pendekatan kalut ini dapat
membantu pihak
bertanggungjawab untuk mengawal pencemaran O3 di
kawasan pendidikan
di Malaysia.
Kata kunci:
Kaedah penghampiran
purata setempat; Monsun Barat Daya; Monsun Timur Laut;
pendekatan kalut;
ozon;
ABSTRACT
Forecasting concentration of
ozone (O3) is very important because the air containing O3 can
cause chronic diseases such as cancer and asthma. This study
is a pilot study using chaotic approach to forecast the concentration
of O3 in
Malaysian education area. The studied data were the hourly O3 observed
at the station located at Universiti
Pendidikan Sultan Idris, Tanjung
Malim, Perak. Before the forecasting
model can be built, the time series are tested in advance to
determine the existence of chaotic dynamics. Chaotic approach
has two steps, namely the reconstruction of phase space and
forecasting process. Before the phase space can be reconstructed,
there are two parameters that need to be determined namely the
delay time τ and embedding dimension m. Both of these parameters
were obtained from the average mutual information method and
Cao method, respectively. Through phase space plot and Cao method,
chaotic dynamic are present in the studied O3 time
series. Therefore, the forecasting model through chaotic approach
using local mean approximation method is built. This chaotic
approach is one of the alternative methods that can be used
to forecast the O3 time
series. Correlation coefficient is chosen to present the relationship
between the observed value and forecasted value. The correlation
coefficient for the O3 time
series during Northeast Monsoon is 0.8921. Meanwhile, the value
of the correlation coefficient during Southwest Monsoon is 0.9002.
It is hoped that the chaotic approach can help responsible agency
to manage O3 pollution
in Malaysian education area.
Keywords: Chaotic approach; local average approximation method; Northeast
Monsoon; ozone; Southwest Monsoon
REFERENCES
Abarbanel, H.D.I. 1996. Analysis
of Observed Chaaotic Data.
New York: Springer-Verlag.
Adenan, N.H.
& Noorani, M.S.M. 2015. Peramalan data
siri masa aliran sungai di dataran banjir dengan menggunakan
pendekatan kalut.
Sains Malaysiana 44(3):
463-471.
Awang, N.R.,
Elbayoumi, M., Ramli,
N.A. & Yahaya, A.S. 2016. The Influence of spatial variability of critical conversion point
(CCP) in production of ground level ozone in the context of
tropical climate. Aerosol and Air Quality Research
16(1): 153-165.
Banan, N.,
Latif, M.T., Juneng, L. & Ahamad,
F. 2013. Characteristics of surface ozone concentrations
at stations with different backgrounds in the Malaysian Peninsula.
Aerosol and Air Quality Research 13(3): 1090-1106.
Cakmak, S.,
Hebbern, C., Vanos,
J., Crouse, D.L. & Burnett, R. 2016. Ozone exposure
and cardiovascular-related mortality in the Canadian Census
Health and Environment Cohort (CANCHEC) by spatial synoptic
classi fi cation zone. Environmental
Pollution 214(2): 589-599.
Cao,
L. 1997. Practical method for determining
the minimum embedding dimension of a scalar time series.
Physica D 110(1): 43-50.
Ghazali, N.A.,
Ramli, N.A., Yahaya,
A.S., Yusof, N.F.F.M.D., Sansuddin,
N. & Al Madhoun, W.A. 2010. Transformation of nitrogen dioxide into ozone and prediction of ozone
concentrations using multiple linear regression techniques.
Environmental Monitoring and Assessment 165(1-4): 475-
489.
Hamid,
N.Z.A. & Noorani, M.S.M. 2013. An
improved prediction model of ozone concentration time series
based on chaotic approach. Wold
Academy of Science, Engineering and Technology 7(11): 206-211.
Hamid, N.Z.A. & Noorani, M.S.M. 2014. Suatu kajian perintis menggunakan pendekatan kalut bagi pengesanan
sifat dan
peramalan siri masa kepekatan PM10. Sains
Malaysiana 43(3): 475-481.
Hamid,
N.Z.A., Noorani, M.S.M., Juneng,
L. & Latif, M.T. 2013. Prediction of ozone
concentrations using nonlinear prediction method. AIP
Conference Proceedings 1522: 125-131.
Hardy, K. 2005.
Linear Algebra for Engineers and Scientists using Matlab. Upper Saddle River, New Jersey: Pearson
Education, Inc.
Indira,
P., Inbanathan, S.S.R., Selvaraj,
R.S. & Suresh, A.A. 2016. Chaotic analysis on
surface ozone measurements at tropical urban coastal station
Chennai, India. IOSRD International Journal of Earth
Science 2(1): 1-8.
Ismail,
M., Abdullah, S., Yuen, F.S. & Nurul
Adyani, G. 2016. A ten-year investigation
on ozone and it precursors at Kemaman,
Terengganu, Malaysia. EnvironmentAsia
9(1): 1-8.
Kocak,
K., Saylan, L. & Sen, O. 2000. Nonlinear time series prediction of O3 concentration in Istanbul.
Atmospheric Environment 34(8): 1267-1271.
Madaniyazi, L., Nagashima, T., Guo, Y., Pan, X.
& Tong, S. 2016. Projecting ozone-related
mortality in East China. Environment International
92-93: 165-172.
Mudway,
I.S. & Kelly, F.J. 2000. Ozone and the lung: A sensitive issue.
Mol. Aspects Med. 21(1-2): 1-48.
Muhamad,
M., Ul-Saufie, A.Z. & Deni, S.M.
2015. Three days ahead prediction of daily 12 hour ozone (O3) concentrations
for urban area in Malaysia. Journal of Environmental
Science and Technology 8(3): 102-112.
Ramli,
N.A., Ghazali, N.D. & Shukri
Yahaya, A. 2010. Diurnal fluctuations
of ozone concentrations and its precursors and prediction of
ozone using multiple linear regressions. Malaysian
Journal of Environmental Management 11(2): 57-69.
Sivakumar,
B. 2002.
A phase-space reconstruction approach to prediction
of suspended sediment concentration in rivers. Journal
of Hydrology 258(1-4): 149-162.
Sousa,
S.I.V., Martins, F.G., Alvim-Ferraz,
M.C.M. & Pereira, M.C. 2007. Multiple linear regression and artificial neural networks
based on principal components to predict ozone concentrations.
Environmental Modelling & Software 22(1): 97-103.
Sprott,
J.C. 2003.
Chaos and Time-Series Analysis.
Oxford: Oxford University Press.
Tan, K.C., Lim,
H.S. & Mohd Zubir Mat Jafri. 2016.
Prediction of column ozone concentrations using multiple regression
analysis and principal component analysis techniques: A case
study in Peninsular Malaysia. Atmospheric Pollution Research
7(3): 533-546.
Velickov, S. 2004. Nonlinear dynamics and chaos with application to hydrodynamics and
hydrological modelling. PhD Dissertation.
Delft University of Technology, Netherlands (Unpublished).
*Corresponding author; email: ateenzaim@gmail.com