Sains Malaysiana 46(1)(2017): 35–41

http://dx.doi.org/10.17576/jsm-2017-4601-05

 

Somatic Embryogenesis on Plumule and Radicle Explants Obtained from Warm Water Hydroprimed Wheat (Triticum aestivum L.) cv. Kunduru and cv. Cakmak Seeds

(Embriogenesis Soma ke atas Plumul dan Radikel Eksplan diperoleh daripada Benih Gandum

Air Panas Hidroprim (Triticum aestivum L.) kv. Kunduru dan Cakmak)

 

PARISA POURALI KAHRIZ & MAHSA POURALI KAHRIZ*

 

Department of Field Crops, Faculty of Agriculture, Ankara University, 06110 D?şkap?, Ankara

Turkey

 

Received: 5 November 2014/Accepted: 22 April 2016

 

ABSTRACT

Advances in wheat biotechnology and in vitro somatic embryogenesis (SE) provide new openings to faster application of these techniques in functional genomic studies, genetic engineering and plant breeding. This study reports in vitro SE using plumule and radicle explants of two wheat cultivars Cakmak and Kunduru on MS induction medium amended with varying concentrations of 2,4-D. Both plumule and radicle explants were regenerative and induced variable number of somatic embryos per explant. Explants and treatment methods affected in vitro SE irrespective of the genotypes used in the study. Although 100% SE was noted on both explants of two cultivars, plumule explants of both genotypes induced heavy and larger friable calli followed by somatic embryogenic calli in terms of weight. Plumule explants also induced large numbers of shoot buds and somatic embryo-induced maturing shoots per explant. The in vitro raised plantlets were successfully rooted followed by hardening and acclimatisation in pots containing peat moss in mist house. After 7 days from weaning, these plants were transferred to a shade house to grow and set flowers. Water spray containing 0.50 μg of NPK (1:1:1) was given at intervals of 4 d to enhance success rate of acclimatised plants. Success rates of 96 and 80% were noted on plumule and radicle-induced plants, respectively. It is further concluded that use of this novel methodology would favorably facilitate its use in genetic transformation and functional genomic studies.

 

Keywords: In vitro; plumule; radicle; regeneration; wheat

 

ABSTRAK

Kemajuan dalam bioteknologi gandum dan embriogenesis soma (SE) in vitro membuka peluang baru untuk aplikasi pantas teknik ini dalam kajian fungsian genom, kejuruteraan genetik dan pembiakan tumbuhan. Kajian ini melaporkan SE in vitro menggunakan eksplan plumul dan radikel daripada dua kultivar gandum Cakmak dan Kunduru ke atas MS induksi medium in vitro yang dipinda dengan kepekatan berbeza 2,4-D. Kedua-dua eksplan plumul dan radikel telah terjana semula dan mengaruh bilangan pemboleh ubah soma embrio setiap eksplan. Kaedah eksplan dan rawatan mempengaruhi in vitro SE tanpa mengira genotip yang digunakan dalam kajian ini. Walaupun 100% SE telah dicatat pada kedua-dua eksplan daripada dua kultivar, eksplan plumul dari kedua-dua genotip mengaruh calli yang berat dan lebih besar repui diikuti SE calli daripada sudut berat. Eksplan plumul juga mengaruh sebilangan besar daripada tunas pucuk dan pucuk matang soma embrio-teraruh setiap eksplan. Anak tumbuhan yang ditanam secara in vitro yang telah berjaya berakar umbi diikuti dengan pengerasan dan penyesuaian dalam pasu yang mengandungi mos gambut di rumah kabus. Selepas 7 hari penyapihan, tumbuh-tumbuhan ini telah dipindahkan ke satu rumah peneduh untuk membesar dan mengeluarkan bunga. Semburan air yang mengandungi 0.50 μg NPK (1:1:1) telah diberikan pada selang 4 hari untuk meningkatkan kadar kejayaan penyesuaian tumbuh-tumbuhan. Kadar kejayaan 96 dan 80% dicatat masing-masing ke atas tumbuh-tumbuhan plumul dan radikel. Dapat disimpulkan bahawa penggunaan kaedah novel ini akan menggalakkan kemudahan penggunaannya dalam transformasi genetik dan kajian fungsian genom.

 

Kata kunci: Gandum; in vitro; plumul; radikel; penjanaan semula

REFERENCES

Aher, R.K. & Nair, L.N. 2005. Morphogenetic responses of plumule, radicle and cotyledon explants of Sorghum vulgare Pers. in vitro. Asian Journal of Microbiology, Biotechnology & Environmental Sciences 7: 791-792.

Balli, A.M.R., Rossnagel, B.G. & Kartha, K.K. 1993. Evaluation of 10 Canadian barley (Hordeum vulgare L.), cultivars for tissue culture response. Canadian Journal of Plant Sciences 73: 171-174.

Becker, D., Brettschneider, R. & Lorz, H. 1994. Fertile transgenic wheat from microprojectile bombardment of scutellar tissue. Plant Journal 5: 299-307.

Bhaskaran, S. & Smith, R.H. 1990. Regeneration in cereal tissue culture: A review. Crop. Sci. 30(6): 1328-1337.

Bi, R.M., Kou, M., Chen, L.G., Mao, S.R. & Wang, H.G. 2007. Plant regeneration through callus initiation from mature embryo of Triticum. Plant Breeding 126(9): 9-12.

Bregitzer, P., Dahleen, L.S. & Campbell, R.D. 1998. Enhancement of plant regeneration from embryogenic callus of commercial barley cultivars. Plant Cell Reports 17: 941-945.

Chan, J.L., Saenz, L., Talavera, C., Hornung, R., Robert, M. & Oropeza, C. 1998. Regeneration of coconut (Cocos nucifera L.) from plumule explants through somatic embryogenesis. Plant Cell Reports 17: 515-521.

Chaudhury, A. & Qu, R. 2000. Somatic embryogenesis and plant regeneration of turf - type bermudagrass: Effect of 6 - benzyladenine in callus induction medium. Plant Cell Tissue and Organ Culture 60(2): 113-120.

Chu, C.C., Hill, R.D. & Brule-Babel, A.L. 1990. High frequency of pollen regeneration in embryoid formation and plant (Triticum aestivum L.) on monosaccharide containing media. Plant Science 66: 255-262.

Elena, B.E. & Ginzo, H.D. 1988. Effect of auxin levels on shoot formation with different embryo tissues from a cultivar and a commercial hybrid of wheat (Triticum aestivum L.). Journal of Plant Physiology 132: 600-603.

Feher, A. 2006. Why somatic plant cells start to form embryos? In Somatic Embryogenesis, Vol 2, Plant Cell Monographs, edited by Mujib, A. & Šamaj, J. Berlin: Springer. pp. 85-101.

Fellers, J.P., Guenzi, A.C. & Talaiferro, C. 1995. Factors effecting the establishment and manitenance of embryogenic callus and suspension cultures of wheat (Triticum aestivum L.). Plant Cell Reports 15: 232-237.

Fennel, S., Bohorova, N., Ginkel, M., Crossa, J. & Hoisington, D.A. 1996. Plant regeneration from immature embryos of 48 elite CIMMYT bread wheats. Theoretical and Applied Genetics 92: 163-169.

Finer, J.J. 2010. Plant Nuclear Transformation, Vol 64, Genetic Modification of Plants. Berlin: Springer.

Hess, J. & Carman, J. 1998. Competence of immature wheat embryos: Genotype, donor plant environment, and endogenous hormone levels. Crop Science 38: 249-253.

Hornung, R. 1995. Micropropagation of Cocos nucifera L. from plumuler tissue excised from mature zygotic embryos. Plantations Recherche Developpement 2(2): 38-41.

Maddock, S.E., Lancaster, V.A., Risiott, R. & Franklin, J. 1983. Plant regeneration from culture immature embryos and inflorescences of 25 cultivars of wheat (Triticum aestivum L.). J. Experim. Bot. 34: 915-926.

Mathias, R.J. & Simpson, E.S. 1986. The interaction of genotype and culture medium on tissue culture response of wheat (Triticum aestivum L. em. Thell) callus. Plant Cell Tiss. Organ Cult. 7: 31-37.

Mazor, L., Perl, M. & Negbi, M. 1984. Changes in some ATP dependent activities in seed during treatment with polyethylene glycol and during redrying process. J. Exp. Bot. 35: 1119-1127.

Mehmood, K., Arshad, M., Ali, G.A. & Razzaq, A. 2013. T?ssue culture responses of some wheat (Tr?t?cum aest?vum L.) cult?vars grown ?n Pak?stan. Pak. J. Bot. 45(SI): 545-549.

Mendoza, M.G. & Kaeppler, H.F. 2002. Auxin and sugar effects on callus induction and plant regeneration frequencies from mature embryos of wheat (Triticum aestivum L.). In Vitro Cell. Dev. Biol.-Plant 38: 39-45.

Parmar, S.S., Sainger, M., Chaudhary, D., Pawan, K. & Jaiwal, P.K. 2012. Plant regeneration from mature embryo of commercial Indian bread wheat (Triticum aestivum L.) cultivars. Physiol. Mol. Biol. Plants 18(2): 177-183.

Patnaik, D., Vishnudason, D. & Khurana, P. 2006. Agrobacterium - mediated transformation of mature embryos Triticum aestivum and Triticum durum. Curr. Sci. 91(3): 307-317.

Patnaik, D. & Khurana, P. 2001. Wheat biotechnology: A minireview. Electronic J. Biotechnol. 4: 74-102.

Rajyalakshmi, K., Grover, A., Maheshwari, N., Tyagi, A.K. & Maheshwari, S.C. 1991. High frequency regeneration of plantlets from the leaf bases via somatic embryogenesis and comparison of polypeptide profiles from morphogenic and non-morphogenic calli in wheat (Triticum aestivum L.). Physiologia Plantarum 82: 617-623.

Santacruz-Ruvalcaba, F., Gutiérrez-Mora, A. & Rodríguez-Garay, B. 1998. Somatic embryogenesis in some cactus and agave species. Journal of the Professional Association for Cactus Development 3: 15-26.

Sarker, R.H. & Biswas, A. 2002. In vitro plantlet regeneration and Agrobacterium-mediated genetic transformation of wheat (Triticum aestivum L.). Plant Tissue Cult. 12: 155-165.

Snedecor, G.W. & Cochran, W.G. 1967. Statistical Methods. Iowa: The Iowa State Univ. Press. pp. 327-329.

Vasil, I.K. 2008. A history of plant biotechnology: From the cell theory of Schleiden and Schwann to biotech crops. Plant Cell Rep. 27: 1423-1440.

Vasil, I.K. 1988. Progress in the regeneration and genetic manipulation of cereal crops. Biotechnology 6: 397-402.

Vasil, I.K. 1994. Molecular improvement of cereals. Plant Mol. Biol. 25: 925-937.

Weeks, J.T., Anderson, O.D. & Blechl, A.E. 1993. Rapid production of multiple independent lines of fertile transgen wheat (Triticum aestivum L.). Plant Physiol. 102: 1077-1084.

 

 

*Corresponding author; email: mahsapourali7@gmail.com

 

 

 

previous