Sains Malaysiana 46(1)(2017): 35–41
http://dx.doi.org/10.17576/jsm-2017-4601-05
Somatic Embryogenesis on Plumule and Radicle
Explants Obtained from Warm Water Hydroprimed Wheat (Triticum
aestivum L.) cv. Kunduru and cv. Cakmak Seeds
(Embriogenesis Soma ke atas Plumul dan Radikel
Eksplan diperoleh daripada Benih Gandum
Air Panas Hidroprim (Triticum aestivum L.)
kv. Kunduru dan Cakmak)
PARISA POURALI KAHRIZ
& MAHSA POURALI KAHRIZ*
Department of Field
Crops, Faculty of Agriculture, Ankara University, 06110 D?şkap?, Ankara
Turkey
Received: 5 November 2014/Accepted:
22 April 2016
ABSTRACT
Advances in wheat biotechnology and in vitro somatic
embryogenesis (SE) provide new openings to faster
application of these techniques in functional genomic studies, genetic
engineering and plant breeding. This study reports in vitro SE using
plumule and radicle explants of two wheat cultivars Cakmak and Kunduru on MS induction
medium amended with varying concentrations of 2,4-D. Both plumule and radicle
explants were regenerative and induced variable number of somatic embryos per
explant. Explants and treatment methods affected in vitro SE irrespective
of the genotypes used in the study. Although 100% SE was
noted on both explants of two cultivars, plumule explants of both genotypes
induced heavy and larger friable calli followed by somatic embryogenic calli in
terms of weight. Plumule explants also induced large numbers of shoot buds and
somatic embryo-induced maturing shoots per explant. The in vitro raised
plantlets were successfully rooted followed by hardening and acclimatisation in
pots containing peat moss in mist house. After 7 days from weaning, these
plants were transferred to a shade house to grow and set flowers. Water spray
containing 0.50 μg of NPK (1:1:1) was given at intervals of
4 d to enhance success rate of acclimatised plants. Success rates of 96 and 80%
were noted on plumule and radicle-induced plants, respectively. It is further
concluded that use of this novel methodology would favorably facilitate its use
in genetic transformation and functional genomic studies.
Keywords: In vitro;
plumule; radicle; regeneration; wheat
ABSTRAK
Kemajuan dalam
bioteknologi gandum dan embriogenesis soma (SE)
in vitro membuka
peluang baru untuk aplikasi pantas teknik ini dalam kajian fungsian
genom, kejuruteraan genetik dan pembiakan tumbuhan. Kajian ini
melaporkan SE in vitro menggunakan eksplan plumul dan radikel
daripada dua kultivar gandum Cakmak dan Kunduru ke atas MS induksi
medium in vitro yang dipinda dengan kepekatan berbeza 2,4-D.
Kedua-dua eksplan plumul dan radikel telah terjana semula dan mengaruh
bilangan pemboleh ubah soma embrio setiap eksplan. Kaedah
eksplan dan rawatan mempengaruhi in
vitro SE tanpa
mengira genotip yang digunakan dalam kajian ini. Walaupun
100% SE telah dicatat pada kedua-dua eksplan daripada dua kultivar,
eksplan plumul dari kedua-dua genotip mengaruh calli yang berat
dan lebih besar repui diikuti SE calli daripada sudut berat.
Eksplan plumul juga mengaruh sebilangan besar daripada tunas
pucuk dan pucuk matang soma embrio-teraruh setiap eksplan. Anak
tumbuhan yang ditanam secara in
vitro yang telah berjaya berakar umbi diikuti dengan pengerasan
dan penyesuaian dalam pasu yang mengandungi mos gambut di rumah
kabus. Selepas 7 hari penyapihan, tumbuh-tumbuhan
ini telah dipindahkan ke satu rumah peneduh untuk membesar dan mengeluarkan
bunga. Semburan air yang mengandungi 0.50 μg NPK (1:1:1) telah diberikan pada selang 4 hari untuk meningkatkan
kadar kejayaan penyesuaian tumbuh-tumbuhan.
Kadar kejayaan 96 dan 80% dicatat masing-masing
ke atas tumbuh-tumbuhan plumul dan radikel. Dapat disimpulkan
bahawa penggunaan kaedah novel ini akan
menggalakkan kemudahan penggunaannya dalam transformasi genetik
dan kajian fungsian genom.
Kata kunci: Gandum; in vitro;
plumul; radikel; penjanaan semula
REFERENCES
Aher, R.K. & Nair,
L.N. 2005. Morphogenetic responses of plumule, radicle and
cotyledon explants of Sorghum vulgare Pers. in vitro. Asian
Journal of Microbiology, Biotechnology & Environmental Sciences 7:
791-792.
Balli, A.M.R.,
Rossnagel, B.G. & Kartha, K.K. 1993. Evaluation of 10
Canadian barley (Hordeum vulgare L.), cultivars for tissue
culture response. Canadian Journal of Plant Sciences 73: 171-174.
Becker,
D., Brettschneider, R. & Lorz, H. 1994. Fertile
transgenic wheat from microprojectile bombardment of scutellar tissue. Plant
Journal 5: 299-307.
Bhaskaran, S. &
Smith, R.H. 1990. Regeneration in cereal tissue culture: A review. Crop.
Sci. 30(6): 1328-1337.
Bi,
R.M., Kou, M., Chen, L.G., Mao, S.R. & Wang, H.G. 2007. Plant
regeneration through callus initiation from mature embryo of Triticum. Plant Breeding 126(9): 9-12.
Bregitzer,
P., Dahleen, L.S. & Campbell, R.D. 1998. Enhancement
of plant regeneration from embryogenic callus of commercial barley cultivars. Plant Cell Reports 17: 941-945.
Chan,
J.L., Saenz, L., Talavera, C., Hornung, R., Robert, M. & Oropeza, C. 1998. Regeneration of coconut
(Cocos nucifera L.) from plumule explants through somatic embryogenesis. Plant Cell Reports 17: 515-521.
Chaudhury, A. & Qu,
R. 2000. Somatic embryogenesis and plant regeneration of turf - type
bermudagrass: Effect of 6 - benzyladenine in callus induction medium. Plant
Cell Tissue and Organ Culture 60(2): 113-120.
Chu,
C.C., Hill, R.D. & Brule-Babel, A.L. 1990. High
frequency of pollen regeneration in embryoid formation and plant (Triticum
aestivum L.) on monosaccharide containing media. Plant Science 66:
255-262.
Elena, B.E. & Ginzo,
H.D. 1988. Effect of auxin levels on shoot formation with
different embryo tissues from a cultivar and a commercial hybrid of wheat (Triticum
aestivum L.). Journal of Plant Physiology 132: 600-603.
Feher,
A. 2006. Why somatic plant cells start to form embryos? In Somatic Embryogenesis, Vol
2, Plant Cell Monographs, edited by Mujib, A. & Šamaj, J. Berlin:
Springer. pp. 85-101.
Fellers,
J.P., Guenzi, A.C. & Talaiferro, C. 1995. Factors
effecting the establishment and manitenance of embryogenic callus and
suspension cultures of wheat (Triticum aestivum L.). Plant
Cell Reports 15: 232-237.
Fennel,
S., Bohorova, N., Ginkel, M., Crossa, J. & Hoisington, D.A. 1996. Plant
regeneration from immature embryos of 48 elite CIMMYT bread wheats. Theoretical
and Applied Genetics 92: 163-169.
Finer,
J.J. 2010. Plant Nuclear Transformation, Vol 64, Genetic Modification of Plants. Berlin:
Springer.
Hess, J. & Carman,
J. 1998. Competence of immature wheat embryos: Genotype, donor plant
environment, and endogenous hormone levels. Crop Science 38: 249-253.
Hornung, R. 1995.
Micropropagation of Cocos nucifera L. from plumuler tissue excised from
mature zygotic embryos. Plantations Recherche Developpement 2(2): 38-41.
Maddock, S.E.,
Lancaster, V.A., Risiott, R. & Franklin, J. 1983. Plant
regeneration from culture immature embryos and inflorescences of 25 cultivars
of wheat (Triticum aestivum L.). J. Experim. Bot. 34:
915-926.
Mathias, R.J. &
Simpson, E.S. 1986. The interaction of genotype and culture medium on tissue
culture response of wheat (Triticum aestivum L. em. Thell)
callus. Plant Cell Tiss. Organ Cult. 7:
31-37.
Mazor,
L., Perl, M. & Negbi, M. 1984. Changes in some ATP dependent
activities in seed during treatment with polyethylene glycol and during
redrying process. J. Exp. Bot. 35: 1119-1127.
Mehmood,
K., Arshad, M., Ali, G.A. & Razzaq, A. 2013. T?ssue
culture responses of some wheat (Tr?t?cum aest?vum L.) cult?vars grown
?n Pak?stan. Pak. J. Bot. 45(SI): 545-549.
Mendoza, M.G. &
Kaeppler, H.F. 2002. Auxin and sugar effects on callus induction and plant
regeneration frequencies from mature embryos of wheat (Triticum aestivum L.). In Vitro Cell. Dev. Biol.-Plant 38: 39-45.
Parmar,
S.S., Sainger, M., Chaudhary, D., Pawan, K. & Jaiwal, P.K. 2012. Plant
regeneration from mature embryo of commercial Indian bread wheat (Triticum
aestivum L.) cultivars. Physiol. Mol. Biol. Plants 18(2):
177-183.
Patnaik, D.,
Vishnudason, D. & Khurana, P. 2006. Agrobacterium - mediated
transformation of mature embryos Triticum aestivum and Triticum
durum. Curr. Sci. 91(3): 307-317.
Patnaik, D. &
Khurana, P. 2001. Wheat biotechnology: A minireview. Electronic J.
Biotechnol. 4: 74-102.
Rajyalakshmi,
K., Grover, A., Maheshwari, N., Tyagi, A.K. & Maheshwari, S.C. 1991. High frequency
regeneration of plantlets from the leaf bases via somatic embryogenesis and
comparison of polypeptide profiles from morphogenic and non-morphogenic calli
in wheat (Triticum aestivum L.). Physiologia Plantarum 82:
617-623.
Santacruz-Ruvalcaba,
F., Gutiérrez-Mora, A. & Rodríguez-Garay, B. 1998. Somatic
embryogenesis in some cactus and agave species. Journal of the
Professional Association for Cactus Development 3: 15-26.
Sarker,
R.H. & Biswas, A. 2002. In vitro plantlet
regeneration and Agrobacterium-mediated genetic transformation of wheat (Triticum
aestivum L.). Plant Tissue Cult. 12:
155-165.
Snedecor, G.W. &
Cochran, W.G. 1967. Statistical Methods. Iowa: The Iowa State Univ.
Press. pp. 327-329.
Vasil, I.K. 2008. A
history of plant biotechnology: From the cell theory of Schleiden and Schwann
to biotech crops. Plant Cell Rep. 27: 1423-1440.
Vasil, I.K. 1988. Progress
in the regeneration and genetic manipulation of cereal crops. Biotechnology 6:
397-402.
Vasil, I.K. 1994. Molecular improvement of cereals. Plant Mol. Biol. 25:
925-937.
Weeks,
J.T., Anderson, O.D. & Blechl, A.E. 1993. Rapid
production of multiple independent lines of fertile transgen wheat (Triticum
aestivum L.). Plant Physiol. 102: 1077-1084.
*Corresponding author; email:
mahsapourali7@gmail.com
|