Sains Malaysiana 46(1)(2017): 51–58

http://dx.doi.org/10.17576/jsm-2017-4601-07

 

Biohydrogen Productions from Hydrolysate of Water Hyacinth Stem (Eichhornia crassipes) Using Anaerobic Mixed Cultures

(Pengeluaran Biohidrogen daripada Hidrolisat Batang Keladi Bunting (Eichhornia crassipes)

Menggunakan Kultur Campuran Anaerob)

 

 

SAKCHAI PATTRA1* & SUREEWAN SITTIJUNDA2

 

1Community Public Health Program, Faculty of Arts and Science, Chaiyaphum Rajabhat University, Chaiyaphum 36000, Thailand

 

2Faculty of Environment and Resource Studies, Mahidol University, Nakhon Pathom 73170

Thailand

 

Received: 22 April 2015/Accepted: 14 April 2016

 

ABSTRACT

Response surface methodology (RSM) with central composite design (CCD) was applied to optimize key factors affecting hydrogen production (HP) from diluted acid hydrolysate of water-hyacinth stem (WHS) by heat-treated anaerobic sludge in a batch fermentation process. Key factors affecting namely substrate concentration and initial pH was investigated. The results indicated that substrate concentration and initial pH had significantly effects on HP (p<0.05). A maximum HP hydrogen production rate and hydrogen yield of 182.7 mmol H2/L, 2.81 mmol H2/L h and 0.84 mol H2/mol hexose were obtained under the optimum conditions i.e. substrate concentration of 4.06 g/L and initial pH of 5.81. The total energy production from the fermentative of WHS hydrolysate was 1.97 kJ.

 

Keywords: Central composite design (CCD); dilute acid hydrolysis; hydrogen production; response surface methodology (RSM); water-hyacinth

 

ABSTRAK

Kaedah permukaan tindak balas (RSM) dan pusat reka bentuk tergubah (CCD) digunakan untuk mengoptimumkan faktor utama yang mempengaruhi pengeluaran hidrogen (HP) daripada hidrolisat asid cair batang keladi bunting (WHS) melalui enapcemar anaerobik terawat-haba di dalam proses penapaian kumpulan. Faktor utama yang mempengaruhi kepekatan substrat dan pH awal dikaji. Keputusan menunjukkan bahawa kepekatan substrat dan pH awal telah memberi kesan secara signifikan kepada HP (p<0.05). Kadar pengeluaran hidrogen HP maksimum dan hasil hidrogen ialah 182.7 mmol H2/L, 2.81 mmol H2/L h dan 0.84 mol H2/mol heksosa telah diperoleh pada keadaan optimum iaitu kepekatan substrat 4.06 g/L dan pH awal 5.81. Jumlah pengeluaran tenaga daripada penapaian WHS hidrolisat adalah 1.97 kJ.

 

Kata kunci: Hidrolisis asid cair; kaedah permukaan tindak balas (RSM); keladi bunting; pengeluaran hidrogen; pusat reka bentuk tergubah (CCD)

REFERENCES

Abdelhamid, A.M. & Gabr, A.A. 1991. Evaluation of water hyacinth as feed for ruminants. Archives of Animal Nutrition 41: 754-756.

Antonopoulou, G., Gavala, H.N., Ioannis, V.S. & Gerasimos, L. 2011. Effect of substrate concentration on fermentative hydrogen production from sweet sorghum extract. Int. J. Hydrogen Energy 36: 4843-4851.

APHA.1995. Standard Methods for the Examination of Water and Wastewater. 19th ed. Washington DC: American Public Health Association.

Aweke, G. 1993. The water hyacinth (Eichhornia crassipes) in Ethiopia. Bulletin des séances. Academic royale des Sciences D’outre-mer 39: 399-404.

Cheng, C.L. & Chang, J.S. 2011. Hydrolysis of lignocellulosic feedstock by novel cellulases originating from Pseudomonas ps. CL3 for fermentative hydrogen production. Bioresour. Technol. 102: 8628-8634.

Chong, M.L., Sabaratnam, V., Shirai, Y. & Hassan, M.A. 2009. Biohydrogen production from biomass and industrial waste by dark fermentation. Int. J. Hydrogen Energy 34: 3277-3287.

Fan, X., Li, C., Wang, A. & Yan, Z. 2016. Influence of surfactant-free ionic liquid microemulsions pretreatment on the composition, structure and enzymatic hydrolysis of water hyacinth. Bioresour. Technol. 208: 19-23.

Fangkum, A. & Reungsang, A. 2011. Biohydrogen production from mixed xylose/arabinose at thermophilic temperature by anaerobic mixed cultures in elephant dung. Int. J. Hydrogen Energy 36: 13928-13938.

Gunnarsson, C.C. & Petersen, C.M. 2007. Water hyacinths as a resource in agriculture and energy production: A literature review. Waste Manage. 27: 117-129.

Harmsen, P., Huijgen, W., Bermudez, L. & Bakker, R. 2010. Literature Review of Physical and Chemical Pretreatment Processes for Lignocellulosic Biomass. Food & Biobased Research, Wageningen UR. pp. 1-49.

Jianlong, W. & Wei, W. 2009. Factors influencing fermentative hydrogen production: A review. Int. J. Hydrogen Energy 34: 799-811.

Jung, Y.H., Cho, H.J., Lee, J.S., Noh, E.W., Park, O.K. & Kim, K.H. 2013. Evaluation of a transgenic poplar as a potential biomass crop for biofuel production. Bioresour Technol. 129: 639-641.

Kongjan, P. & Angelidaki, I. 2010. Extreme thermophilic biohydrogen production from wheat straw hydrolysate using mixed culture fermentation: Effect of reactor configuration. Bioresour. Technol. 101: 7789-7796.

Kongjan, P., O-Thong, S., Kotay, M., Min, B. & Angelidaki, I. 2010. Biohydrogen production from wheat straw hydrolysate by dark fermentation using extreme thermophilic mixed culture. Biotechnol. Bioeng. 105: 899-908.

Kumar, A., Singh, L.K. & Ghosh, S. 2009. Bioconversion of lignocellulosic fraction of water-hyacinth (Eichhornia crassipes) hemicellulose acid hydrolysate to ethanol by Pichia stipitis. Bioresour. Technol. 100: 3293-3297.

Lin, C.Y. & Lay, C.H. 2005. A nutrient formulation for fermentative hydrogen production using anaerobic sewage sludge microflora. Int. J. Hydrogen Energy 30: 285-292.

Lo, Y.C., Su, Y.C., Cheng, C.L. & Chang, J.S. 2011. Biohydrogen production from pure and natural lignocellulosic feedstock with chemical pretreatment and bacterial hydrolysis. Int. J. Hydrogen Energy 36: 13955-13963.

Long, C., Cui, J., Liu, Z., Liu, Y., Long, M. & Hu, Z. 2010. Statistical optimization of fermentative hydrogen production from xylose by newly isplated Enterobacter sp. CN1. Int. J. Hydrogen Energy 35: 6657-6664.

Mu, Y., Zheng, X.J. & Yu, H.Q. 2009. Determining optimum conditions for hydrogen production from glucose by an anaerobic culture using response surface methodology (RSM). Int. J. Hydrogen Energy 34: 7959-7963.

Nigam, J.N. 2002. Bioconversion of water-hyacinth (Eichhornia crassipes) hemicellulose acid hydrolysate to motor fuel ethanol by xylose-fermenting yeast. J. Biotechnol. 97: 107- 116.

Nissila, M.E., Lay, C.H. & Puhakka, J.A. 2014. Dark fermentative hydrogen production from lignocellulosic hydrolyzates: A review. Biomass and Bioener. 67: 145-159.

Owen, W., Stuckey, C., Healy, J., Young, L. & McCarty, P. 1978. Bioassay for monitoring biochemical methane potential and anaerobic toxicity. Water Res. 13: 485-493.

Pattra, S., Sangyoka, S., Boonmee, M. & Reungsang, A. 2008. Bio-hydrogen production from the fermentation  of sugarcane bagasse hydrolysate by Clostridium butyricum. International Journal of Hydrogen Energy 33(19): 5256-5265.

Pattra, S. & Sittijunda, S. 2015. Optimization of factors affecting acid hydrolysis of water hyacinth stem (Eichhornia Crassipes) for bio-hydrogen production. Energy Procedia  79: 833-837.

Polprasert, C., Kongsricharoern, N. & Kanjanaprapin, W. 1994. Production of feed and fertilizer from water hyacinth plants in the tropics. Waste Manage. Res. 12: 3-11.

Phowan, P. & Danvirutai, P. 2014. Hydrogen production from cassava pulp hydrolysate by mixed seed cultures: Effects of initial pH, substrate and biomass concentrations. Biomass and Bioener. 64: 1-10.

Reungsang, A., Sittijunda, S. & Angelidaki, I. 2013. Simultaneous production of hydrogen and ethanol from waste glycerol by Enterobacter aerogenes KKU-S1. Int. J. Hydrogen Energy 38: 1813-1825.

Saha, S.K. & Brewer, C.F. 1994. Determination of the concentrations of oligosaccharides complex type carbohydrates and glycolproteins using the phenol-sulfuric acid method. Carbohydr. Res. 254: 157-167.

Saraphirom, P. & Reungsang, A. 2010. Optimization of biohydrogen production from sweet sorghum syrup using statistical methods. Int. J. Hydrogen Energy 35: 13435-13444.

Sittijunda, S. & Reungsang, A. 2012. Biohydrogen production from waste glycerol and sludge by anaerobic mixed cultures. Int. J. Hydrogen Energy 37: 13789-13796.

Sivagurunathan, P., Kumar, G., Bakonyic, P., Kim, S.H., Kobayashi, T., Xu, K.Q., Lakner, G., Toth, G., Nemestothy, N. & Bako, K.B. 2016. A critical review on issues and overcoming strategies for the enhancement of dark fermentative hydrogen production in continuous systems. Int. J. Hydrogen Energy 41: 3820-3836.

Sreela-or, C., Imai, T., Plangklang, P. & Reungsang, A. 2011. Optimization of key factors affecting hydrogen production from food waste by anaerobic mixed cultures. Int. J. Hydrogen Energy 36: 14120-14133.

Vazquez, I.V., Rangel, M.P., Tapia, A., Buitrón, G., Molina, C., Hernández, G. & Delgado, L.A. 2015. Hydrogen and butanol production from native wheat straw by synthetic microbial consortia integrated by species of Enterococcus and Clostridium. Fuel 159: 214-222.

Xu, J.F., Ren, N.Q., Wang, A.J., Qiu, J., Zhao, Q.L., Feng, Y.F. & Liu, B.F. 2010. Cell growth and hydrogen production on the mixture of xylose and glucose using a novel strain of Clostridium sp. HR-1 isolated from cow dung compost. Int. J. Hydrogen Energy 35: 13467-13474.

Zhao, X., Cheng, K. & Liu, D. 2009. Organosolv pretreatment of lignocellulosic biomass for enzymatic hydrolysis. Appl. Microbiol. Biotechnol. 82: 815-827.

Zhao, C., Wenjing, L., Hongtao, W. & Xiangliang, P. 2013. Simultaneous hydrogen and ethanol production from a mixture of glucose and xylose using extreme thermophiles I: Effect of substrate and pH. Int. J. Hydrogen Energy 38: 9701-9706.

 

 

*Corresponding author; email: sakpattra@gmail.com

 

 

 

previous