Sains Malaysiana 46(1)(2017): 9–19

http://dx.doi.org/10.17576/jsm-2017-4601-02

 

Demersal Fish and Shrimp Abundance in Relation to Mangrove Hydrogeomorphological Metrics

(Kaitan Kelimpahan Ikan Dasar dan Udang dengan Metriks Hidrogeomorfologi Paya Bakau)

 

 

JAMIZAN A.R. & CHONG V.C.*

 

Institute Biological Sciences, University of Malaya, 50603 Kuala Lumpur, Federal Territory

Malaysia

 

Received: 1 December 2015/Accepted: 18 April 2016

 

ABSTRACT

Previous studies have found positive correlations between mangrove forest extent and fisheries yield but none of these univariate relationships provide a reliable estimate of yield from mangrove area. This study tests the hypothesis that the nursery ground value or natural production of fish and shrimps is related to the hydrogeomorphology settings of mangrove forests by using multivariate redundancy analysis (RDA). The hydrogeomorphological metrics of five mangrove forests imaged by satellite were measured using Geographical Information System (GIS). The RDA indicated that the metrics, including mangrove area, multiple waterways and creeks, mangrove-river interface, waterway surface area and sediment organic matter, influenced the diversity and abundance of fish and shrimps. Larger values of these metrics increase the abundance of economically important fish species of the families Lutjanidae, Haemulidae, Serranidae and economically-important penaeid shrimps. Sediment organic matter also significantly correlates with the distribution and abundance of fish that feed off the bottom such as the Leiognathidae, Clupeidae and Mullidae. Mangrove forests with combinations of large mangrove area, river surface area, high stream ordering and longest mangrove-river interface will provide greater role as nursery grounds for fish and shrimps.

 

Keywords: Fish; GIS; hydrogeomorphology; mangrove; nursery ground value; shrimp; RDA

 

 

ABSTRAK

Kajian terdahulu mendapati terdapat korelasi positif antara hutan bakau dan taburan ikan, tetapi bukan semua hubungan univariat tersebut dapat memberikan anggaran yang sebenar hasil tangkapan dari kawasan paya bakau. Kajian ini menguji hipotesis bahawa nilai nurseri atau pengeluaran semula jadi ikan dan udang adalah berkaitan dengan pemboleh ubah hidrogeomorfologi hutan bakau melalui analisis lewahan multivariat (RDA). Metriks hidrogeomorfologi lima hutan bakau dengan pengimejan satelit diukur menggunakan Sistem Maklumat Geografi (GIS). RDA menunjukkan bahawa metrik tersebut termasuk keluasan hutan bakau, beberapa anak sungai dan jeram, interfasa paya bakau-sungai, kawasan permukaan sungai dan bahan organik sedimen, mempengaruhi spesies dan kelimpahan ikan dan udang. Nilai yang besar bagi metriks ini akan meningkatkan spesies ikan yang penting daripada segi ekonomi terutamanya daripada famili Lutjanidae, Haemulidae, Serranidae, dan udang penaeid. Bahan sedimen organik juga jelas mempunyai hubung kait dengan taburan dan kelimpahan ikan yang makan di permukaan dasar seperti Leiognathidae, Clupeidae dan Mullidae. Hutan bakau dengan kombinasi keluasan paya bakau, kawasan permukaan sungai, bilangan anak sungai, dan interfasa bakau-sungai yang tinggi akan memberikan peranan yang lebih besar sebagai kawasan nurseri untuk ikan dan udang.

 

Kata kunci: GIS; hidrogeomorfologi; hutan bakau; ikan; nilai nurseri; RDA; udang

REFERENCES

Abrantes, K. & Sheaves, M. 2009. Food web structure in a near-pristine mangrove area of the Australian Wet Tropics. Estuarine, Coastal and Shelf Science 82: 597-607.

Adams, A.J. & Ebersole, J.P. 2002. Use of back-reef and lagoon habitats by coral reef fishes. Marine Ecology Progress Series 228: 213-226.

Beck, M.W., Heck, K.L., Able, K.W., Childers, D.L., Eggleston, D.B., Gillanders, B.M., Halpern, B., Hays, C.G., Hoshino, K., Minello, T.J., Orth, R.J., Sheridan, P.F. & Weinstein, M.P. 2001. The identification, conservation and management of estuarine and marine nurseries for fish and invertebrates. BioScience 51: 633-641.

Buchanan, J.B. 1984. Sediment analysis. In Methods for the Study of Marine Benthos, 2nd ed., Holme, N.A. & McIn-tyre, A.D. (eds). Oxford: Blackwell Scientific. pp. 41-64.

Cappo, M. & Kelley, C. 2000. Connectivity in the Great Barrier Reef World Heritage Area: An overview of pathways and processes. In Oceanographic Processes of Coral Reefs: Physical and Biological Links in the Great Barrier Reef, edited by Wolanski, E. Boca Raton: CRC Press. pp. 161-187.

Chong, V.C. & Sasekumar, A. 2002. Fish communities and fisheries of Sungai Johor and Sungai Pulai Estuaries (Johor, Malaysia). Malay. Nat. J. 56: 279-302.

Chong, V.C. & Ooi, A.L. 2001. Prawn abundance and mangroves: Quantified relationships and new perspectives. International Workshop on Mangrove Systems of South East Asia, 6-8 Nov, ICLARM, Penang, Malaysia, p. 12.

Chong, V.C. 2007. Mangroves and fisheries linkages: The Malaysian perspective. Bulletin of Marine Science 80(3): 755-772.

Dahlgren, C.P., Kellison, G.T., Adams, A.J., Gillanders, B.M., Kendall, M.S., Layman, C.A., Ley, J.A., Nagelkerken, I. & Serafy, J.E. 2006. Marine nurseries and effective juvenile habitats: Concepts and applications. Marine Ecology Progress Series 312: 291-295.

de la Morinière, E.C., Pollux, B.J.A., Nagelkerken, I. & van der Velde, G. 2002. Post-settlement life cycle migration patterns and habitat preference of coral reef fish that use seagrass and mangrove habitats as nurseries. Estuarine, Coastal and Shelf Science 55(2): 309-321.

DOE. 2008. Malaysian Environmental Quality Report. Department of Environmental: Ministry of Science, Technology and Environmental, Malaysia.

Faunce, C.H. & Serafy, J.E. 2007. Nearshore habitat use by gray snapper (Lutjanus griseus) and bluestriped grunt (Haemulon sciurus): Environmental gradients and ontogenetic shifts. Bulletin of Marine Science 80(3): 473-495.

Guttridge, T.L., Gruber, S.H., Franks, B.R., Kessel, S.T., Gledhill, K.S., Uphill, J., Krause, J. & Sims, D.W. 2012. Deep danger: Intra-specific predation risk influences habitat use and aggregation formation of juvenile lemon sharks Negaprion brevirostris. Marine Ecology Progress Series 445: 279-291.

Koenig, C.C., Coleman, F.C., Eklund, A.M., Schull, J. & Ueland, J. 2007. Mangroves as essential nursery habitat for goliath grouper (Epinephelus itajara). Bulletin of Marine Science 80(3): 567-586.

Laegdsgaard, P. & Johnson, C. 2001. Why do juvenile fish utilise mangrove habitats? Journal of Experimental Marine Biology and Ecology 257(2): 229-253.

Lee, S.Y. 2004. Relationship between mangrove abundance and tropical prawn production: A re-evaluation. Marine Biology 257: 229-253.

Legendre, P. & Gallagher, E.D. 2001. Ecologically meaningful transformations for ordination of species data. Oecologia 129: 271-280.

Ley, J.A. & McIvor, C.C. 2002. Linkages between estuarine and reef assemblages: Enhancement by the presence of well-developed mangrove shorelines. In The Everglades, Florida Bay, and Coral Reefs of the Florida Keys: An Ecosystem Sourcebook, edited by Porter, J.W. & Porter, K.G. Boca Raton: CRC Press. pp. 539-562.

Low, C.B., Chong, V.C., Lim, L.H.S. & Hayase, S. 1999. Prawn production of Matang and Dinding River Mangroves: Species distribution and seasonal recruitment. In Proc. Fourth JIRCAS Seminar on Productivity and Sustainable Utilization of Brackishwater Mangrove Ecosystems, K. Kiso and P. S. Choo, (eds), 8-9 December 1998, Penang, Malaysia, Japan International Center for Agricultural Sciences, Tsukuba, Japan. pp. 89-101.

Meynecke, J.O., Lee, S.Y., Duke, N.C. & Warnken, J. 2007. Relationships between estuarine habitats and coastal fisheries in Quensland, Australia. Bulletin of Marine Science 80(3): 773-793.

Muhammad Ali, S.H., Chong, V.C. & Sasekumar, A. 1999. Benthic microfaunal distribution in the Sungai Selinsing, Matang Mangrove Forest Reserve, Malaysia. In Proc. Fourth JIRCAS Seminar on Productivty and Sustainable Utilization of Brakishwater Mangrove Ecosystems, 8-9 December 1998, Penang, Malaysia, edited by Kisio, K. & Choo, P.S. Japan International Center for Agriculture Sciences, Tsukuba, Japan. pp. 36-48.

Mumby, P.J., Edwards, A.J., Arias-Gonzales, J.E., Lindeman, K.C., Blackwell, P.G., Gall, A., Gorczynska, M.I., Harborne, A.R., Pescod, C.I., Renken, J., Wabnitz, C.C.C. & Llewellyn, G. 2004. Mangroves enhance the biomass of coral reef fish communities in the Caribbean. Nature 427: 533-536.

Nagelkerken, I., van der Velde, G., Gorissen, M.W., Meijer, G.J., van’t Hof, T. & den Hartog, C. 2000. Importance of mangroves, seagrass beds and the shallow coral reef as a nursery for important coral reef fishes, using a visual census technique. Estuarine, Coastal and Shelf Science 51: 31-44.

Nagelkerken, I. 2007. Are non-estuarine mangroves connected to coral reefs through fish migration? Bulletin of Marine Science 80(3): 595-607.

Pareta, K. & Pareta, U. 2011. Hydromorphogeological study of Karawan watershed using GIS and remote sensing techniques. E-International Scientific Research Journal 3(4): 243-268.

Sparre, P. & Venema, S. 1992. Introduction to Tropical Fish Stock Assessment. Part 1 - Manual. FAO Fish. Tech. Pap. 306/1 Rev. 1. FAO Rome.

Primavera, J.H. 1997. Fish predation on mangrove-associated penaeids: The role of structures and substrate. Journal of Experimental Marine Biology and Ecology 215(2): 205-216.

Robertson, A.I. & Blaber, S.J.M. 1992. Plankton, epibenthos and fish communities. In Tropical Mangrove Ecosystems (Coastal and Estuarine Studies; 41), edited by Robertson, A.I. & Alongi, D.M. Washington, D.C.: American Geophysical Union. pp. 173-224.

Robertson, A.I. & Duke, N.C. 1987. Mangroves as nursery sites: Comparisons of the abundance and species composition of fish and crustaceans in mangroves and other tropical Australia. Marine Biology 96: 193-205.

Sheaves, M.J., Sheaves, J., Stegemann, K.E. & Molony, B.W. 2014. Resource partitioning and habitat-specific dietary plasticity of two estuarine sparid fishes increase food web complexity. Marine and Freshwater Research 65(2): 114-123.

Shreve, R.L. 1966. Statistical law of stream numbers. Journal of Geology 74: 17-37.

Sidle, R.C. & Onda, Y. 2004. Hydrogeomorphology: Overview of an emerging science. Hydrological Processes 18(4): 597-602.

Tanaka, K., Hanamura, Y., Chong, V.C., Watanabe, S., Man, A., Kassim, F.M., Kodama, M. & Ichikawa, T. 2011. Stable isotope analysis reveals ontogenetic migration and the importance of a large mangrove estuary as a feeding ground for juvenile John’s snapper Lutjanus johnii. Fisheries Science 77(5): 809-816.

ter Braak, C.J.F. & Smilauer, P. 2002. CANOCO Reference Manual and CanoDraw for Windows User’s Guide: Software for Canonical Community Ordination (version 4.5). Ithaca, NY, USA (www.canoco.com): Microcomputer Power.

Vance, D.J., Haywood, M.D.E., Heales, D.S., Kenyon, R.A., Loneragan, N.R. & Pendrey, R.C. 1996. How far do prawns and fish move into mangroves? Distribution of juvenile banana prawns Penaeus merguiensis and fish in a tropical mangrove forest in northern Australia. Marine Ecology Progress Series 131: 115-124.

Verweij, M.C., Nagelkerken, I., de Graaff, D., Peeters, M., Bakker, E.J. & van der Velde, G. 2006. Structure, food and shade attract juvenile coral reef fish to mangrove and seagrass habitats: A field experiment. Marine Ecology Progress Series 306: 257-268.

 

 

*Corresponding author; email: chong@um.edu.my

 

 

 

previous