Sains Malaysiana 46(2)(2017): 217–221
http://dx.doi.org/10.17576/jsm-2017-4602-05
Efficacy
Evaluation of Combination Vaccine of Recombinant C-Terminal Fragments of ApxIA,
ApxIIA and ApxIIIA in Piglets
(Penilaian
Kemujaraban Gabungan Vaksin Rekombinan Terminal-C Serpihan ApxIA,
ApxIIA dan ApxIIIA pada Anak Babi)
JA YONG MOON1, JI YOUNG KANG2, JEONG-WOO SEO2, WON KYONG KIM1, YEONG HWAN CHOI1, MIN SOO CHOI1 & JIN HUR1*
1Department of
Bioactive Material Sciences and Department of Veterinary Public Health, College
of Veterinary Medicine, Chonbuk National University Iksan Campus Iksan 54596, South
Korea
2Industrial
Microbiology and Bioprocess Research Center, Korea Research Institute of
Bioscience and Biotechnology (KRIBB), Jeongeup-si, 580-185, Republic of Korea
Received: 25 January 2016/Accepted: 7 June 2016
ABSTRACT
The efficacy of the combination vaccine of the individual
C-terminal fragments of ApxIA, ApxIIA and ApxIIIA of Actinobacillus pleuropneumoniae (APP)
was evaluated in piglets. Twenty piglets were divided equally into 2 groups (n=10).
All piglets were intramuscularly primed at 4 week-of-age (0 week post prime
inoculation (WPPI)) and were intramuscularly boosted at 6 week-of-age
(2 WPPI). Group A piglets were
inoculated with sterile PBS and group B piglets were
inoculated with the combination vaccine. Concentrations of each of the
C-terminal fragment-specific IgG as determined by ELISA were
significantly higher in group B than in group A from 2 WPPI until
the end of this study. Clinical signs were observed from only 10% of group B piglets
after the challenge with the mixture of APP serotypes 1, 2 and 5 at 4 WPPI,
while 50% of group A piglets were protected against APP infections.
Overall, intramuscular inoculation with the vaccine candidate can efficiently
protect piglets against APP infection.
Keywords: Actinobacillus
pleuropneumoniae; immunization; piglets; porcine pleuropneumonia; protection
ABSTRAK
Keberkesanan kombinasi vaksin oleh serpihan terminal-C individu
ApxIA, ApxIIA dan ApxIIIA daripada Actinobacillus pleuropneumoniae (APP)
dinilai pada anak babi. Dua puluh anak babi dibahagikan sama rata kepada 2 kumpulan (n=10). Semua anak babi telah
mencapai intraotot primer pada umur 4 minggu (0 minggu selepas inokulasi utama
(WPPI))
dan telah dirangsang intraototnya pada umur 6 minggu (2 WPPI). Anak babi kumpulan A telah diinokulasi dengan PBS steril
dan anak babi kumpulan B telah diinokulasi dengan vaksin kombinasi. Kepekatan
setiap IgG fragmen-tertentu terminal-C seperti yang ditetapkan oleh ELISA adalah jauh lebih tinggi dalam kumpulan B daripada kumpulan A daripada 2 WPPI sehingga ke penghujung
kajian ini. Tanda klinikal diperhatikan pada 10% daripada anak babi kumpulan B
selepas cabaran dengan campuran serotip APP 1, 2 dan 5 pada 4 WPPI,
manakala 50% anak babi kumpulan A dilindungi daripada jangkitan APP.
Secara keseluruhannya, inokulasi intraotot dengan calon vaksin boleh melindungi
anak babi terhadap jangkitan APP dengan cekap.
Kata kunci: Actinobacillus pleuropneumoniae; anak babi; imunisasi;
perlindungan; porcine pleuropneumonia
REFERENCES
Blackall, P.J., Klaasen, H.L., van den Bosch,
H., Kuhnert, P. & Frey, J. 2002. Proposal of a new serovar of Actinobacillus
pleuropneumoniae: Serovar 15. Vet. Microbiol. 84: 47-52.
Chen, X., Xu, Z., Li, L.,
Chen, H. & Zhou, R. 2012. Identification of conserved surface proteins as novel antigenic
vaccine candidates of Actinobacillus pleuropneumoniae. J. Microbiol 50:
978-986.
Cruijsen, T., Van Leengoed,
L., Dekker-Nooren, T.C., Schoevers, J.H. & Verheijden, J.H. 1992. Phagocytosis and killing of Actinobacillus
pleuropneumoniae by alveolar macrophages and polymorphonuclear leukocytes
isolated from pigs. Infect. Immun. 60: 4867-4871.
Fenwick, B. & Henry, S. 1994. Porcine
pleuropneumoniae. J. Am. Vet. Med. Assoc. 204: 1334-1340.
Frey, J. & Kuhnert, P. RTX toxins in
Pasteurellaceae. Int. J. Med. Microbiol. 292: 149-158.
Haesebrouck, F., Pasmans,
F., Chiers, K., Maes, D., Ducatelle, R. & Decostere, A. 2004. Efficacy of vaccines against bacterial diseases
in swine: What can we expect? Vet. Microbiol. 100: 255-268.
Holmgren, J. & Czerkinsky, C. 2005. Mucosal immunity and vaccines. Nat. Med. 11: S45-S53.
Hur, J. & Lee, J.H. 2014. Optimization of
immune strategy for a construct of Salmonella-delivered ApxIA, ApxIIA,
ApxIIIA and OmpA antigens of Actinobacillus pleuropneumoniae for
prevention of porcine pleuropneumonia using a murine model. Vet. Res. Commum 38: 87-91.
Jessing, S.G., Angen, Ø.
& Inzana, T.J. 2003. Evaluation of a multiplex PCR test for simultaneous identification and serotyping
of Actinobacillus pleuropneumoniae. J. Clin. Microbiol. 41:
4095-4100.
Jessing, S.G., Ahrens, P., Inzana, T.J. &
Angen, Ø. 2008. The genetic organisation isolation of the capsule biosynthesis
region of Actinobacillus pleuropneumoniae serotypes 1, 6, 7 and 12. Vet.
Microbiol. 129: 350-359.
Kamp, E.M.,
Stockhofe-Zurwieden, N., van Leengoed, L.A & Smits, M.A. 1997. Endobronchial inoculation
with Apx toxins of Actinobacillus pleuropneumoniae leadsto
pleuropneumonia in pigs. Infect. Immun. 65: 4350-4354.
Kim, B., Min, K., Choi, C.,
Cho, W.S., Cheon, D.S., Kwon, D., Kim, J. & Chae, C. 2001. Antimicrobial susceptibility of Actinobacillus
pleuropneumoniae isolated from pigs in Korea using new standardized
procedures. J. Vet. Med. Sci 63: 341-342.
Lee, K.E., Choi, H.W., Kim, H.H., Song, J.Y.
& Yang, D.K. 2015. Prevalence and
characterization of Actinobacillus pleuropneumoniae isolated from Korean
pigs. J. Bacteriol. Virol. 45: 19-25.
Liao, C.W., Chiou, H.Y., Yeh, K.S., Chen, J.R. & Weng,
C.N. 2003. Oral immunization using formalin-inactivated Actinobacillus
pleuropneumoniae antigens entrapped in microspheres with aqueous dispersion
polymers prepared using a co-spray drying process. Prev. Vet. Med. 61:
1-15.
Lu, Y.C., Li, M.C., Chen, Y.M., Chu, C.Y., Lin, S.F. &
Yang, W.J. 2011. DNA vaccine encoding type IV pilin of Actinobacillus
pleuropneumoniae induces strong immune response but confers limited
protective efficacy against serotype 2 challenge. Vaccine 29: 7740-7746.
MacDonald,
T.T. 2003. The mucosal immune system. Parasite.
Immunol. 25: 235-246.
Ramjeet, M., Deslandes, V., Goure, J. & Jacques, M.
2008. Actinobacillus pleuropneumoniae vaccines: from
bacterins to new insights into vaccination strategies. Anim. Health. Res.
Rev 9: 25-45.
Rycroft, A.N., Williams, D., Cullen, J.M. & Macdonald,
J. 1991. The cytotoxin of Actinobacillus pleuropneumoniae (pleurotoxin)
is distinct from the haemolysin and is associated with a 120 kDa polypeptide. J.
Gen. Microbiol. 137: 561-568.
Shin,
S.J., Bae, J.L., Cho, Y.W., Lee, D.Y., Kim, D.H., Yang, M.S., Jang, Y.S. &
Yoo, H.S. 2005. Induction of antigen-specific immune
responses by oral vaccination with Saccharomyces cerevisiae expressing Actinobacillus
pleuropneumoniae ApxIIA. FEMS. Immunol. Med. Microbiol. 43:
155-164.
Tumamao, J.Q., Bowles, R.E., van den Bosch, H., Klaasen,
H.L., Fenwick, B.W. & Blackall, P.J. 2004. An evaluation of the role of antibodies to Actinobacillus pleuropneumoniae serovar
1 and 15 in the protection provided by sub-unit and live streptomycin-dependent
pleuropneumonia vaccines. Aust. Vet. J. 82: 773-780.
Yoo,
A.N., Cha, S.B., Shin, M.K., Won, H.K., Kim, E.H., Choi, H.W. & Yoo, H.S.
2014. Serotype and antimicrobial resistance patterns of the recent Korean Actinobacillus
pleuropneumoniae isolates. Vet. Rec 174: 223.
Zhou, Y., Li, L., Chen, Z., Yuan, H., Chen, H. & Zhou,
R. 2013. Adhesion protein ApfA of Actinobacillus pleuropneumoniae is required for pathogenesis and is a potential target for vaccine
development. Clin. Vaccine. Immunol. 20: 287-294.
*Corresponding
author; email: hurjin@jbnu.ac.kr
|