Sains Malaysiana 46(2)(2017): 217–221

http://dx.doi.org/10.17576/jsm-2017-4602-05

 

Efficacy Evaluation of Combination Vaccine of Recombinant C-Terminal Fragments of ApxIA, ApxIIA and ApxIIIA in Piglets

(Penilaian Kemujaraban Gabungan Vaksin Rekombinan Terminal-C Serpihan ApxIA, ApxIIA dan ApxIIIA pada Anak Babi)

 

JA YONG MOON1, JI YOUNG KANG2, JEONG-WOO SEO2, WON KYONG KIM1, YEONG HWAN CHOI1, MIN SOO CHOI1 & JIN HUR1*

 

1Department of Bioactive Material Sciences and Department of Veterinary Public Health, College of Veterinary Medicine, Chonbuk National University Iksan Campus Iksan 54596, South Korea

 

2Industrial Microbiology and Bioprocess Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup-si, 580-185, Republic of Korea

 

Received: 25 January 2016/Accepted: 7 June 2016

 

ABSTRACT

The efficacy of the combination vaccine of the individual C-terminal fragments of ApxIA, ApxIIA and ApxIIIA of Actinobacillus pleuropneumoniae (APP) was evaluated in piglets. Twenty piglets were divided equally into 2 groups (n=10). All piglets were intramuscularly primed at 4 week-of-age (0 week post prime inoculation (WPPI)) and were intramuscularly boosted at 6 week-of-age (2 WPPI). Group A piglets were inoculated with sterile PBS and group B piglets were inoculated with the combination vaccine. Concentrations of each of the C-terminal fragment-specific IgG as determined by ELISA were significantly higher in group B than in group A from 2 WPPI until the end of this study. Clinical signs were observed from only 10% of group B piglets after the challenge with the mixture of APP serotypes 1, 2 and 5 at 4 WPPI, while 50% of group A piglets were protected against APP infections. Overall, intramuscular inoculation with the vaccine candidate can efficiently protect piglets against APP infection.

 

Keywords: Actinobacillus pleuropneumoniae; immunization; piglets; porcine pleuropneumonia; protection

 

ABSTRAK

Keberkesanan kombinasi vaksin oleh serpihan terminal-C individu ApxIA, ApxIIA dan ApxIIIA daripada Actinobacillus pleuropneumoniae (APP) dinilai pada anak babi. Dua puluh anak babi dibahagikan sama rata kepada 2 kumpulan (n=10). Semua anak babi telah mencapai intraotot primer pada umur 4 minggu (0 minggu selepas inokulasi utama (WPPI)) dan telah dirangsang intraototnya pada umur 6 minggu (2 WPPI). Anak babi kumpulan A telah diinokulasi dengan PBS steril dan anak babi kumpulan B telah diinokulasi dengan vaksin kombinasi. Kepekatan setiap IgG fragmen-tertentu terminal-C seperti yang ditetapkan oleh ELISA adalah jauh lebih tinggi dalam kumpulan B daripada kumpulan A daripada 2 WPPI sehingga ke penghujung kajian ini. Tanda klinikal diperhatikan pada 10% daripada anak babi kumpulan B selepas cabaran dengan campuran serotip APP 1, 2 dan 5 pada 4 WPPI, manakala 50% anak babi kumpulan A dilindungi daripada jangkitan APP. Secara keseluruhannya, inokulasi intraotot dengan calon vaksin boleh melindungi anak babi terhadap jangkitan APP dengan cekap.

 

Kata kunci: Actinobacillus pleuropneumoniae; anak babi; imunisasi; perlindungan; porcine pleuropneumonia

 

REFERENCES

Blackall, P.J., Klaasen, H.L., van den Bosch, H., Kuhnert, P. & Frey, J. 2002. Proposal of a new serovar of Actinobacillus pleuropneumoniae: Serovar 15. Vet. Microbiol. 84: 47-52.

Chen, X., Xu, Z., Li, L., Chen, H. & Zhou, R. 2012. Identification of conserved surface proteins as novel antigenic vaccine candidates of Actinobacillus pleuropneumoniae. J. Microbiol 50: 978-986.

Cruijsen, T., Van Leengoed, L., Dekker-Nooren, T.C., Schoevers, J.H. & Verheijden, J.H. 1992. Phagocytosis and killing of Actinobacillus pleuropneumoniae by alveolar macrophages and polymorphonuclear leukocytes isolated from pigs. Infect. Immun. 60: 4867-4871.

Fenwick, B. & Henry, S. 1994. Porcine pleuropneumoniae. J. Am. Vet. Med. Assoc. 204: 1334-1340.

Frey, J. & Kuhnert, P. RTX toxins in Pasteurellaceae. Int. J. Med. Microbiol. 292: 149-158.

Haesebrouck, F., Pasmans, F., Chiers, K., Maes, D., Ducatelle, R. & Decostere, A. 2004. Efficacy of vaccines against bacterial diseases in swine: What can we expect? Vet. Microbiol. 100: 255-268.

Holmgren, J. & Czerkinsky, C. 2005. Mucosal immunity and vaccines. Nat. Med. 11: S45-S53.

Hur, J. & Lee, J.H. 2014. Optimization of immune strategy for a construct of Salmonella-delivered ApxIA, ApxIIA, ApxIIIA and OmpA antigens of Actinobacillus pleuropneumoniae for prevention of porcine pleuropneumonia using a murine model. Vet. Res. Commum 38: 87-91.

Jessing, S.G., Angen, Ø. & Inzana, T.J. 2003. Evaluation of a multiplex PCR test for simultaneous identification and serotyping of Actinobacillus pleuropneumoniae. J. Clin. Microbiol. 41: 4095-4100.

Jessing, S.G., Ahrens, P., Inzana, T.J. & Angen, Ø. 2008. The genetic organisation isolation of the capsule biosynthesis region of Actinobacillus pleuropneumoniae serotypes 1, 6, 7 and 12. Vet. Microbiol. 129: 350-359.

Kamp, E.M., Stockhofe-Zurwieden, N., van Leengoed, L.A & Smits, M.A. 1997. Endobronchial inoculation with Apx toxins of Actinobacillus pleuropneumoniae leadsto pleuropneumonia in pigs. Infect. Immun. 65: 4350-4354.

Kim, B., Min, K., Choi, C., Cho, W.S., Cheon, D.S., Kwon, D., Kim, J. & Chae, C. 2001. Antimicrobial susceptibility of Actinobacillus pleuropneumoniae isolated from pigs in Korea using new standardized procedures. J. Vet. Med. Sci 63: 341-342.

Lee, K.E., Choi, H.W., Kim, H.H., Song, J.Y. & Yang, D.K. 2015. Prevalence and characterization of Actinobacillus pleuropneumoniae isolated from Korean pigs. J. Bacteriol. Virol. 45: 19-25.

Liao, C.W., Chiou, H.Y., Yeh, K.S., Chen, J.R. & Weng, C.N. 2003. Oral immunization using formalin-inactivated Actinobacillus pleuropneumoniae antigens entrapped in microspheres with aqueous dispersion polymers prepared using a co-spray drying process. Prev. Vet. Med. 61: 1-15.

Lu, Y.C., Li, M.C., Chen, Y.M., Chu, C.Y., Lin, S.F. & Yang, W.J. 2011. DNA vaccine encoding type IV pilin of Actinobacillus pleuropneumoniae induces strong immune response but confers limited protective efficacy against serotype 2 challenge. Vaccine 29: 7740-7746.

MacDonald, T.T. 2003. The mucosal immune system. Parasite. Immunol. 25: 235-246.

Ramjeet, M., Deslandes, V., Goure, J. & Jacques, M. 2008. Actinobacillus pleuropneumoniae vaccines: from bacterins to new insights into vaccination strategies. Anim. Health. Res. Rev 9: 25-45.

Rycroft, A.N., Williams, D., Cullen, J.M. & Macdonald, J. 1991. The cytotoxin of Actinobacillus pleuropneumoniae (pleurotoxin) is distinct from the haemolysin and is associated with a 120 kDa polypeptide. J. Gen. Microbiol. 137: 561-568.

Shin, S.J., Bae, J.L., Cho, Y.W., Lee, D.Y., Kim, D.H., Yang, M.S., Jang, Y.S. & Yoo, H.S. 2005. Induction of antigen-specific immune responses by oral vaccination with Saccharomyces cerevisiae expressing Actinobacillus pleuropneumoniae ApxIIA. FEMS. Immunol. Med. Microbiol. 43: 155-164.

Tumamao, J.Q., Bowles, R.E., van den Bosch, H., Klaasen, H.L., Fenwick, B.W. & Blackall, P.J. 2004. An evaluation of the role of antibodies to Actinobacillus pleuropneumoniae serovar 1 and 15 in the protection provided by sub-unit and live streptomycin-dependent pleuropneumonia vaccines. Aust. Vet. J. 82: 773-780.

Yoo, A.N., Cha, S.B., Shin, M.K., Won, H.K., Kim, E.H., Choi, H.W. & Yoo, H.S. 2014. Serotype and antimicrobial resistance patterns of the recent Korean Actinobacillus pleuropneumoniae isolates. Vet. Rec 174: 223.

Zhou, Y., Li, L., Chen, Z., Yuan, H., Chen, H. & Zhou, R. 2013. Adhesion protein ApfA of Actinobacillus pleuropneumoniae is required for pathogenesis and is a potential target for vaccine development. Clin. Vaccine. Immunol. 20: 287-294.

 

 

*Corresponding author; email: hurjin@jbnu.ac.kr

 

 

 

previous