Sains Malaysiana 46(2)(2017): 239–244

http://dx.doi.org/10.17576/jsm-2017-4602-08

 

Protein-Sparing Ability of Carbohydrates from Different Sources in Diets for Fry of Stinging Catfish Heteropneustes fossilis

(Keupayaan Jimat Protein Karbohidrat daripada Sumber Berbeza dalam Diet untuk Anak Keli Stinging Heteropneustes fossilis)

MOHAMMAD LUTFAR RAHMAN1*, MOHAMMAD ABDUS SALAM2, MD. EMRANUL AHSAN3, MD. SHAKHAWATE HOSSAIN4 & MD. ARMAN HOSSAIN5

 

1Department of Genetics & Fish Breeding, Bangabandhu Sheikh MujiburRahman Agricultural University, Gazipur-1706, Bangladesh

 

2Department of Genetics & Fish Breeding, Bangabandhu Sheikh MujiburRahman Agricultural University, Gazipur-1706, Bangladesh

 

3Department of Fisheries Management, Bangabandhu Sheikh MujiburRahman Agricultural University

Gazipur-1706, Bangladesh

 

4Department of Fisheries Biology and Aquatic Environment, Bangabandhu Sheikh MujiburRahman Agricultural University, Gazipur-1706, Bangladesh

 

5Department of Aquaculture, Bangabandhu Sheikh MujiburRahman Agricultural University

Gazipur-1706, Bangladesh

 

Received: 6 December 2015/Accepted: 10 May 2016

 

ABSTRACT

The experiments were carried out to evaluate the protein-sparing effect in Heteropneustes fossilis fry (0.751 ± 0.01 g) fed for 90 days with six isocaloric diets containing 45, 40 or 35% of casein-protein and 25, 30 or 35% of glucose/dextrin, combined properly as the work purpose. The highest weight gain was recorded in fry fed with 35% dextrin and 35% crude protein level. Interestingly, the value of SGR (2.950±0.017) and PER (1.793±0.03) were significantly (p<0.05) increased with reducing protein level from 45 to 35% and with increasing carbohydrate level from 25% to 35%, respectively. However, the poorest growth was recorded in the fry fed with glucose containing diets than dextrin-containing diets. Protein deposition was significantly (p<0.05) lower in fry fed with the glucose diets at the protein level of 45% than those fed with 40 or 35%, indicating that H. fossilis utilize dextrin easily than glucose. Increase of dextrin content from 35 to 45% did not reduce (p<0.05) the weight gain, even reducing the dietary protein from 45 to 35%. This fact suggests that carbohydrate spare protein by using dextrin as energy source.

 

Keywords: Dextrin; glucose; nutrition; Heteropneustes fossilis; sparing effect

 

ABSTRAK

Kajian telah dijalankan untuk menilai kesan jimat protein dalam pemakanan anak ikan Heteropneustes fossilis (0.751 ± 0.01 g) selama 90 hari dengan enam diet isokalori yang mengandungi 45, 40 atau 35% daripada protein kasein dan 25, 30 atau 35% daripada glukosa/dekstrin, digabungkan dengan betul sebagai tujuan kerja. Kenaikan berat badan tertinggi direkodkan dalam pemakanan anak ikan dengan tahap 35% dekstrin dan 35% protein kasar. Menariknya, nilai SGR (2.950±0.017) dan PER (1.793±0.03) masing-masing meningkat secara bererti (p<0.05) dengan pengurangan tahap protein daripada 45 kepada 35% dan peningkatan tahap karbohidrat daripada 25 kepada 35%. Walau bagaimanapun, pertumbuhan lemah direkod untuk pemakanan anak ikan dengan diet yang mengandungi glukosa daripada diet yang mengandungi dekstrin. Pemendapan protein adalah ketara lebih rendah (p<0.05) dalam anak ikan yang diberi makan dengan diet glukosa pada tahap protein 45% berbanding 40% atau 35% yang menunjukkan bahawa H. fossilis menggunakan dekstrin lebih mudah berbanding glukosa. Peningkatan kandungan dekstrin daripada 35 kepada 45% pula tidak mengurangkan (p<0.05) pertambahan berat badan, malah mengurangkan diet protein daripada 45 kepada 35%. Fakta ini menunjukkan bahawa karbohidrat jimat protein dengan menggunakan dekstrin sebagai sumber tenaga.

 

Kata kunci: Dekstrin; glukosa pemakanan; Heteropneustes fossilis; kesan jimat

REFERENCES

Akand, A.M., Miah, M.I. & Haque, M.M. 1989. Effect of dietary protein level on growth, feed conversion and body composition of shingi (Heteropneustes fossilis Bloch). Aquaculture 77(2-3): 175-180. DOI: 10.1016/0044- 8486(89)90200-7.

AOAC. 1984. Official Methods of Analysis. 14th ed. Association of Official Analytical Chemists. Arlington, VA. p. 1141.

Bhatt, V.S. 1968. Studies on the biology of some fresh water fishes. Part -VII. H. fossilis (Bloch). Indian Journal of Fisheries 5(1-2): 99-115.

Cho, C.Y. & Kaushik, S.J. 1990. Nutrition energetics in fish: Energy and protein utilization in rainbow trout (Salmo gairdneri). World Review of Nutrition and Dietetics 6: 132- 172.

Das, M., Dewan, S. & Debnath, S.C. 1989. Studies on fecundity of Heteropneustes fossilis (Bloch) in a minipond of Bangladesh Agricultural University, Mymensingh. Bangladesh. Agricultural Science 16(1): 1-6.

Degani, G. 1987. The influence of the relative proportions of dietary protein and carbohydrate on body weight gain, nitrogen retention and feed conversion of European eels. Anguilla Anguilla. L. Aquaculture Research 18(2): 151-158.

Erfanullah & Jafri, A.K. 1995. Protein-sparing effect of dietary carbohydrate in diets for fingerling Labeo rohita. Aquaculture 136: 331-339. DOI: http://dx.doi.org/10.1016/0044- 8486(95), 00056-9.

Furuichi, M. & Yone, Y. 1982. Availability of carbohydrate in nutrition of carp and red seabream. Bulletin of the Japanese Society for the Science of Fish 48: 945-948.

Garling, D.L. & Wilson, R.P. 1976. Optimum dietary protein to energy ratio for channel catfish fingerlings Ictalurus punctatus. Journal of Nutrition 106: 1368-1375.

Hidalgo, M.C., Sanz, A., Garcia Gallego, M., Saurez, M.D. & de la Higuera, M. 1993. Feeding of the European eel Anguilla anguilla. I. Influence of dietary carbohydrate level. Comparative Biochemistry and Physiology 105(A): 165-169. DOI: 10.1016/0300-9629(93)90190-F.

Halver, J.E. 1976. Nutritional deficiency diseases in salmonids. Fish Pathology 10: 165-180. DOI: http://doi.org/10.3147/ jsfp.10.165.

Hilton, J.W. & Atkinson, J.L. 1982. Response of rainbow trout (Salmo gairdneri) to increased levels of available carbohydrate in practical trout diets. British Journal of Nutrition 47: 597- 607. DOI: http://dx.doi.org/10.1079/BJN19820071.

Khan, M.A. & Abidi, S.F. 2011. Dietary arginine requirement of Heteropneustes fossilis fry (Bloch) based on growth, nutrient retention and haematological parameters. Aquaculture Nutrition 17(4): 418-428. DOI: 10.1111/j.1365- 2095.2010.00819.x

Mia, G.K. 1984. Length-weight relationship and condition factor in the air-breathing catfish, Heteropneustus fosilis (Bloch). Bangladesh Journal of Zoology 12(1): 49-52.

Mohanta, K.N., Mohanty, S.N. & Jena, J.K. 2007. Protein sparing effect of carbohydrate in silver barb, Puntius gonionotus fry. Aquaculture Nutrition 13: 311-317. DOI: 10.1111/j.1365- 2095.2007.00482.x

Mollah, M.F.A. & Alam, M.S. 1990. Effects of different levels of dietary carbohydrate on growth and feed utilization of catfish (Clarias batrachus L.) fry. Indian Journal of Fisheries 37(3): 243-249.

Narejo, N.T., Salam, M.A., Sabur, M.A. & Rahmatullah, S.M. 2005. Effect of stocking density on growth and survival of indigenous catfish, Heteropneustes fossilis (Bloch) reared in cemented cistern fed on formulated feed. Pakistan Journal of Zoology 37(1): 49-52.

National Research Council (NRC). 1993. Nutrient Requirement of Fish. Committee on Animal Nutrition. Board on Agriculture. National Academy of Sciences. Washington: National Academy Press. p. 114.

National Research Council (NRC). 1983. Nutrient Requirements of Warmwater Fishes and Shellfishes. Washington: National Academy of Sciences. p. 102.

Orire, A.M. & Sadiku, S.O.E. 2014. Effect of carbohydrate sources on the growth and body compositions of African catfish (Clarias gariepinus). International Journal of Fisheries and Aquaculture 6(5): 55-61.

Page, J.W. & Andrews, J.W. 1973. Interactions of dietary levels of protein and energy on channel catfish (Ictulurus punctatus). Journal of Nutrition 103: 1339-1346.

Pieper, A. & Pfeffer, E. 1980. Studies on the comparative efficiency of utilization of gross energy from some carbohydrates, proteins and fats by rainbow trout (Salmo gairdneri, R.). Aquaculture 20(4): 323-332. DOI: 10.1016/0044- 8486(80)90093-9.

Singh, R.K., Balange, A.K. & Ghughuskar, M.M. 2006. Protein sparing effect of carbohydrates in the diet of Cirrhinus mrigala (Hamilton, 1822) fry. Aquaculture 258: 680-684. DOI: 10.1016/j.aquaculture.2006.03.049.

Shiau, S.Y. & Peng, C.Y. 1993. Protein sparing effect of carbohydrates in diets for tilapia, Oreochromis niloticus×O. aureus. Aquaculture 117: 327-334. DOI: 10.1016/0044- 8486(93)90329-W

Stone, D.A.J., Allan, G.L. & Anderson, A.J. 2003. Carbohydrate utilization by juvenile silver perch, Bidyanus bidyanus (Mitchell). III. The protein-sparing effect of wheat starch-based carbohydrates. Aquaculture Research 34(2): 123-134. DOI: 10.1046/j.1365-2109.2003.00774.x

Takeuchi, T., Watanabe, T. & Ogino, C. 1979. Optimum ratio of energy to protein for carp. Bulletin of the Japanese Society for the Science of Fish 45: 983-987.

Tung, P.H. & Shiau, S.Y. 1991. Effects of meal frequency on growth performance of hybrid tilapia, Oreochromis niloticus×O. aureus, fed different carbohydrate diets. Aquaculture 92: 343-350. DOI: 10.1016/0044-8486(91)90039-A.

Wilson, R.P. & Halver, J.E. 1986. Protein and amino acid requirements of fishes. Annual Review of Nutrition 6: 225- 244. DOI: 10.1146/annurev.nu.06.070186.001301.

Wilson, R.P. 1994. Utilization of dietary carbohydrate by fish. Aquaculture 124: 67-80. DOI: 10.1016/0044-8486(94)90363- 8.

Watanabe, T., Takeuchi, T., Satoh, S., Ida, T. & Yaguchi, M. 1987. Development of low protein high-energy diets for practical carp culture with special reference to reduction of total nitrogen excretion. Bulletin of the Japanese Society for the Science of Fish 53: 1413-1423.

Zar, J.H. 1999. Biostatistical Analysis. 4th ed. Upper Saddle River, New Jersey: Prentice-Hall Inc. p. 931.

Zhou, C., Ge, X., Liu, B., Xie, J., Chen, R. & Ren, M. 2015. Effect of high dietary carbohydrate on the growth performance, blood chemistry, hepatic enzyme activities and growth hormone gene expression of Wuchang Bream (Megalobrama amblycephala) at two temperatures. Asian- Australasian Journal of Animal Sciences 28(2): 207-214. DOI: 10.5713/ajas.13.0705.

 

 

*Corresponding author; email: mlrahman@bsmrau.edu.bd

 

 

 

previous