Sains Malaysiana 46(2)(2017): 239–244
http://dx.doi.org/10.17576/jsm-2017-4602-08
Protein-Sparing
Ability of Carbohydrates from Different Sources in Diets for Fry of Stinging
Catfish Heteropneustes fossilis
(Keupayaan
Jimat Protein Karbohidrat daripada Sumber Berbeza dalam Diet untuk Anak Keli
Stinging Heteropneustes fossilis)
MOHAMMAD LUTFAR RAHMAN1*, MOHAMMAD ABDUS SALAM2, MD. EMRANUL AHSAN3, MD. SHAKHAWATE HOSSAIN4 & MD. ARMAN HOSSAIN5
1Department of
Genetics & Fish Breeding, Bangabandhu Sheikh MujiburRahman Agricultural
University, Gazipur-1706, Bangladesh
2Department
of Genetics & Fish Breeding, Bangabandhu Sheikh MujiburRahman Agricultural
University, Gazipur-1706, Bangladesh
3Department
of Fisheries Management, Bangabandhu Sheikh MujiburRahman Agricultural
University
Gazipur-1706, Bangladesh
4Department
of Fisheries Biology and Aquatic Environment, Bangabandhu Sheikh MujiburRahman
Agricultural University, Gazipur-1706, Bangladesh
5Department of
Aquaculture, Bangabandhu Sheikh MujiburRahman Agricultural University
Gazipur-1706, Bangladesh
Received: 6 December 2015/Accepted: 10 May 2016
ABSTRACT
The experiments were carried out to evaluate the protein-sparing
effect in Heteropneustes fossilis fry
(0.751 ± 0.01 g) fed for 90 days with six isocaloric diets
containing 45, 40 or 35% of casein-protein and 25, 30 or 35% of
glucose/dextrin, combined properly as the work purpose. The highest
weight gain was recorded in fry fed with 35% dextrin and 35% crude
protein level. Interestingly, the value of SGR
(2.950±0.017) and PER (1.793±0.03) were significantly (p<0.05)
increased with reducing protein level from 45 to 35% and with increasing
carbohydrate level from 25% to 35%, respectively. However, the poorest
growth was recorded in the fry fed with glucose containing diets
than dextrin-containing diets. Protein deposition was significantly
(p<0.05) lower in fry fed with the glucose diets at the
protein level of 45% than those fed with 40 or 35%, indicating that
H. fossilis utilize dextrin easily than glucose. Increase
of dextrin content from 35 to 45% did not reduce (p<0.05)
the weight gain, even reducing the dietary protein from 45 to 35%.
This fact suggests that carbohydrate spare protein by using dextrin
as energy source.
Keywords: Dextrin; glucose; nutrition; Heteropneustes fossilis; sparing effect
ABSTRAK
Kajian telah dijalankan untuk menilai kesan jimat protein dalam pemakanan
anak ikan Heteropneustes fossilis (0.751
± 0.01 g) selama 90 hari dengan enam diet isokalori yang
mengandungi 45, 40 atau 35% daripada protein kasein dan 25, 30 atau
35% daripada glukosa/dekstrin, digabungkan dengan betul sebagai
tujuan kerja. Kenaikan berat badan tertinggi direkodkan dalam pemakanan
anak ikan dengan tahap 35% dekstrin dan 35% protein kasar. Menariknya,
nilai SGR (2.950±0.017) dan PER (1.793±0.03)
masing-masing meningkat secara bererti (p<0.05) dengan
pengurangan tahap protein daripada 45 kepada 35% dan peningkatan
tahap karbohidrat daripada 25 kepada 35%. Walau bagaimanapun, pertumbuhan
lemah direkod untuk pemakanan anak ikan dengan diet yang mengandungi
glukosa daripada diet yang mengandungi dekstrin. Pemendapan protein
adalah ketara lebih rendah (p<0.05) dalam anak ikan yang
diberi makan dengan diet glukosa pada tahap protein 45% berbanding
40% atau 35% yang menunjukkan bahawa H. fossilis menggunakan
dekstrin lebih mudah berbanding glukosa. Peningkatan kandungan dekstrin
daripada 35 kepada 45% pula tidak mengurangkan (p<0.05)
pertambahan berat badan, malah mengurangkan diet protein daripada
45 kepada 35%. Fakta ini menunjukkan bahawa karbohidrat jimat protein
dengan menggunakan dekstrin sebagai sumber tenaga.
Kata kunci: Dekstrin; glukosa pemakanan; Heteropneustes fossilis; kesan jimat
REFERENCES
Akand, A.M., Miah, M.I. & Haque, M.M. 1989.
Effect of dietary protein level on growth, feed conversion and body composition
of shingi (Heteropneustes fossilis Bloch). Aquaculture 77(2-3): 175-180. DOI: 10.1016/0044- 8486(89)90200-7.
AOAC. 1984. Official Methods of Analysis. 14th ed.
Association of Official Analytical Chemists. Arlington, VA. p. 1141.
Bhatt, V.S. 1968. Studies on the biology of some fresh water
fishes. Part -VII. H. fossilis (Bloch). Indian Journal of Fisheries 5(1-2):
99-115.
Cho, C.Y. & Kaushik, S.J. 1990. Nutrition energetics in
fish: Energy and protein utilization in rainbow trout (Salmo gairdneri).
World Review of Nutrition and Dietetics 6: 132- 172.
Das, M., Dewan, S. & Debnath, S.C. 1989. Studies on
fecundity of Heteropneustes fossilis (Bloch) in a minipond of Bangladesh
Agricultural University, Mymensingh. Bangladesh. Agricultural Science 16(1):
1-6.
Degani, G. 1987. The influence of the relative proportions
of dietary protein and carbohydrate on body weight gain, nitrogen retention and
feed conversion of European eels. Anguilla Anguilla. L. Aquaculture
Research 18(2): 151-158.
Erfanullah & Jafri, A.K. 1995. Protein-sparing effect of
dietary carbohydrate in diets for fingerling Labeo rohita. Aquaculture 136:
331-339. DOI: http://dx.doi.org/10.1016/0044- 8486(95), 00056-9.
Furuichi, M. & Yone, Y. 1982. Availability of
carbohydrate in nutrition of carp and red seabream. Bulletin of the Japanese
Society for the Science of Fish 48: 945-948.
Garling, D.L. & Wilson, R.P. 1976. Optimum dietary
protein to energy ratio for channel catfish fingerlings Ictalurus punctatus. Journal of Nutrition 106: 1368-1375.
Hidalgo, M.C., Sanz, A., Garcia Gallego, M., Saurez, M.D.
& de la Higuera, M. 1993. Feeding of the European eel Anguilla anguilla.
I. Influence of dietary carbohydrate level. Comparative Biochemistry and
Physiology 105(A): 165-169. DOI: 10.1016/0300-9629(93)90190-F.
Halver, J.E. 1976. Nutritional deficiency diseases in
salmonids. Fish Pathology 10: 165-180. DOI: http://doi.org/10.3147/
jsfp.10.165.
Hilton, J.W. & Atkinson, J.L. 1982. Response of rainbow
trout (Salmo gairdneri) to increased levels of available carbohydrate in
practical trout diets. British Journal of Nutrition 47: 597- 607. DOI:
http://dx.doi.org/10.1079/BJN19820071.
Khan, M.A. & Abidi, S.F. 2011. Dietary arginine
requirement of Heteropneustes fossilis fry (Bloch) based on growth,
nutrient retention and haematological parameters. Aquaculture Nutrition 17(4):
418-428. DOI: 10.1111/j.1365- 2095.2010.00819.x
Mia, G.K. 1984. Length-weight relationship and condition
factor in the air-breathing catfish, Heteropneustus fosilis (Bloch). Bangladesh
Journal of Zoology 12(1): 49-52.
Mohanta, K.N., Mohanty, S.N. & Jena, J.K. 2007. Protein
sparing effect of carbohydrate in silver barb, Puntius gonionotus fry. Aquaculture
Nutrition 13: 311-317. DOI: 10.1111/j.1365- 2095.2007.00482.x
Mollah, M.F.A. & Alam, M.S. 1990. Effects of different
levels of dietary carbohydrate on growth and feed utilization of catfish (Clarias
batrachus L.) fry. Indian Journal of Fisheries 37(3): 243-249.
Narejo, N.T., Salam, M.A., Sabur, M.A. & Rahmatullah,
S.M. 2005. Effect of stocking density on growth and survival of indigenous
catfish, Heteropneustes fossilis (Bloch) reared in cemented cistern fed
on formulated feed. Pakistan Journal of Zoology 37(1): 49-52.
National Research Council (NRC). 1993. Nutrient
Requirement of Fish. Committee on Animal Nutrition. Board on Agriculture.
National Academy of Sciences. Washington: National Academy Press. p. 114.
National Research Council (NRC). 1983. Nutrient
Requirements of Warmwater Fishes and Shellfishes. Washington: National
Academy of Sciences. p. 102.
Orire, A.M. & Sadiku, S.O.E. 2014. Effect of
carbohydrate sources on the growth and body compositions of African catfish (Clarias
gariepinus). International Journal of Fisheries and Aquaculture 6(5):
55-61.
Page, J.W. & Andrews, J.W. 1973. Interactions of dietary
levels of protein and energy on channel catfish (Ictulurus punctatus).
Journal of Nutrition 103: 1339-1346.
Pieper, A. & Pfeffer, E. 1980. Studies on the
comparative efficiency of utilization of gross energy from some carbohydrates,
proteins and fats by rainbow trout (Salmo gairdneri, R.). Aquaculture 20(4): 323-332. DOI: 10.1016/0044- 8486(80)90093-9.
Singh, R.K., Balange, A.K. & Ghughuskar, M.M. 2006.
Protein sparing effect of carbohydrates in the diet of Cirrhinus mrigala (Hamilton,
1822) fry. Aquaculture 258: 680-684. DOI:
10.1016/j.aquaculture.2006.03.049.
Shiau, S.Y. & Peng, C.Y. 1993. Protein sparing effect of
carbohydrates in diets for tilapia, Oreochromis niloticus×O. aureus.
Aquaculture 117: 327-334. DOI: 10.1016/0044- 8486(93)90329-W
Stone, D.A.J., Allan, G.L. & Anderson, A.J. 2003.
Carbohydrate utilization by juvenile silver perch, Bidyanus bidyanus (Mitchell).
III. The protein-sparing effect of wheat starch-based carbohydrates. Aquaculture
Research 34(2): 123-134. DOI: 10.1046/j.1365-2109.2003.00774.x
Takeuchi, T., Watanabe, T. & Ogino, C. 1979. Optimum
ratio of energy to protein for carp. Bulletin of the Japanese Society for
the Science of Fish 45: 983-987.
Tung, P.H. & Shiau, S.Y. 1991. Effects of meal frequency
on growth performance of hybrid tilapia, Oreochromis niloticus×O.
aureus, fed different carbohydrate diets. Aquaculture 92: 343-350.
DOI: 10.1016/0044-8486(91)90039-A.
Wilson, R.P. & Halver, J.E. 1986. Protein and amino acid
requirements of fishes. Annual Review of Nutrition 6: 225- 244. DOI:
10.1146/annurev.nu.06.070186.001301.
Wilson, R.P. 1994. Utilization of dietary carbohydrate by
fish. Aquaculture 124: 67-80. DOI: 10.1016/0044-8486(94)90363- 8.
Watanabe, T., Takeuchi, T., Satoh, S., Ida, T. & Yaguchi,
M. 1987. Development of low protein high-energy diets for practical carp
culture with special reference to reduction of total nitrogen excretion. Bulletin
of the Japanese Society for the Science of Fish 53: 1413-1423.
Zar, J.H. 1999. Biostatistical Analysis. 4th ed.
Upper Saddle River, New Jersey: Prentice-Hall Inc. p. 931.
Zhou, C., Ge, X., Liu, B., Xie, J., Chen, R. & Ren, M.
2015. Effect of high dietary carbohydrate on the growth performance, blood
chemistry, hepatic enzyme activities and growth hormone gene expression of
Wuchang Bream (Megalobrama amblycephala) at two temperatures. Asian-
Australasian Journal of Animal Sciences 28(2): 207-214. DOI:
10.5713/ajas.13.0705.
*Corresponding
author; email: mlrahman@bsmrau.edu.bd
|