Sains Malaysiana 46(2)(2017): 275–283

http://dx.doi.org/10.17576/jsm-2017-4602-12

 

Gas phase Catalytic Oxidation of VOCS using Hydrothermally Synthesized Nest-like

K-OMS 2 Catalyst

(Fasa Gas Pengoksidaan Mangkinan VOCS menggunakan Hidroterma Sintesis seperti Sarang Pemangkin K-OMS 2)

 

M.D. DE LUNA1,. J.M. MILLANAR2., A. YODSA-NGA3 & K. WANTALA4*

 

1Department of Chemical Engineering, University of the Philippines, 1101 Diliman, Quezon City

Philippines

 

2Environmental Engineering Graduate Program, University of the Philippines, 1101 Diliman, Quezon City, Philippines

 

3Chemical Kinetics and Applied Catalysis Laboratory, Faculty of Engineering, Khon Kaen University

40000 Khon Kaen, Thailand

 

4Department of Chemical Engineering, Faculty of Engineering, Khon Kaen University, 40000 Khon Kaen, Thailand

 

5Research Center for Environmental and Hazardous Substance Management (EHSM), Faculty of Engineering, Khon Kaen University, Khon Kaen 40002, Thailand

 

Received: 12 November 2015/Accepted: 14 June 2016

 

ABSTRACT

Toluene and benzene are hazardous air pollutants commonly found in the atmosphere at relatively high concentrations. Due to this, a need to remove these pollutants became a necessity. In this study, octahedral molecular sieve type manganese oxide (K-OMS 2) prepared by hydrothermal method was utilized to decompose toluene and benzene. X-ray diffraction (XRD), scanning electron microscopy (SEM), Brunauer-Emmet-Teller (BET), X-ray absorption near edge structure (XANES) analysis were used to investigate the crystallinity, morphology, surface area and oxidation state of K-OMS 2, respectively. It was confirmed that K-OMS 2 was successfully produced from hydrothermal method. Central composite design (CCD) was used to investigate the main and interaction effects of gas hourly space velocity (GHSV) and reaction temperature on the thermal catalytic oxidation of benzene and toluene. Both factors were found to have significant main and interaction effects on toluene oxidation. However, only the main effects of the factors were significant for benzene. This result was due to the difference in the stability of the structures of the two VOCs. The K-OMS 2 obtained has excellent efficiency on toluene and benzene removal. Toluene was completely decomposed at a temperature as low as 250°C while benzene decomposition reached around 98% at 292.4°C.

 

Keywords: Benzene; central composite design; manganese oxide; octahedral molecular sieve; toluene

 

ABSTRAK

Toluena dan benzena adalah pencemar udara merbahaya yang biasa ditemui di dalam atmosfera pada kepekatan yang agak tinggi. Oleh kerana ini, keperluan untuk menyingkirkan bahan cemar ini menjadi suatu keperluan. Dalam kajian ini, oktahedron ayak molekul jenis mangan oksida (K-OMS 2) disediakan melalui kaedah hidroterma digunakan untuk menghuraikan toluena dan benzena. Pembelauan sinar-x (XRD), mikroskop elektron imbasan (SEM) dan analisis Brunauer-Emmet-Teller (BET) digunakan untuk mengkaji habluran, morfologi dan kawasan permukaan seluas K-OMS 2. Telah disahkan bahawa K-OMS 2 berjaya dihasilkan daripada kaedah hidroterma. Pusat reka bentuk komposit (CCD) telah digunakan untuk mengkaji kesan utama dan interaksi halaju ruang gas tiap jam (GHSV) serta suhu tindak balas atas pengoksidaan haba mangkin toluena dan benzena. Kedua-dua faktor didapati mendatangkan kesan utama dan interaksi yang ketara pada toluena pengoksidaan. Walau bagaimanapun, hanya kesan utama faktor adalah penting bagi benzena. Keputusan ini adalah disebabkan oleh perbezaan dalam kestabilan struktur kedua-dua VOC. K-OMS 2 yang diperoleh mempunyai kecekapan cemerlang ke atas penyingkiran toluena dan benzena. Toluena telah dihuraikan sepenuhnya pada suhu serendah 250°C manakala penguraian benzena mencapai tahap 98% pada 292.4°C.

 

Kata kunci: Benzena; mangan oksida; pusat reka bentuk komposit; oktahedron ayak molekul; toluene

REFERENCES

Areerob, T., Chiarakorn, S. & Grisdanurak, N. 2015. Enhancement of gaseous BTEX adsorption on RH-MCM-41 by chlorosilanes. Sains Malaysiana 44(3): 429-439.

Atribak, I., Bueno-López, A., García-García, A., Navarro, P., Frías, D. & Montes, M. 2010. Catalytic activity for soot combustion of birnessite and cryptomelane. Applied Catalysis B: Environmental 93(3-4): 267-273. doi:10.1016/j. apcatb.2009.09.038.

Azalim, S., Brahmi, R., Agunaou, M., Beaurain, A., Giraudon, J.M. & Lamonier, J.F. 2013. Washcoating of cordierite honeycomb with Ce–ZrMn mixed oxides for VOC catalytic oxidation. Chemical Engineering Journal 223(May): 536- 546. doi:10.1016/j.cej.2013.03.017.

Deng, Y.Q., Zhang, T., Au, C.T. & Yin, S.F. 2014. Oxidation of p-chlorotoluene to p-chlorobenzaldehyde over manganese-based octahedral molecular sieves of different morphologies. Catalysis Communications 43(January): 126-130. doi:10.1016/j.catcom.2013.09.026.

Doucet, N., Bocquillon, F., Zahraa, O. & Bouchy, M. 2006. Kinetics of photocatalytic VOCs abatement in a standardized reactor. Chemosphere 65(7): 1188-1196. doi:10.1016/j. chemosphere.2006.03.061.

Durmusoglu, E., Taspinar, F. & Karademir, A. 2010. Health risk assessment of BTEX emissions in the landfill environment. Journal of Hazardous Materials 176(1-3): 870-877. doi:10.1016/j.jhazmat.2009.11.117.

Genuino, H.C., Dharmarathna, S., Njagi, E.C., Mei, M.C. & Suib, S.L. 2012. Gas-phase total oxidation of benzene, toluene, ethylbenzene, and xylenes using shape-selective manganese oxide and copper manganese oxide catalysts. The Journal of Physical Chemistry C 116(22): 12066-12078. doi:10.1021/ jp301342f.

Guieysse, B., Hort, C., Platel, V., Munoz, R., Ondarts, M. & Revah, S. 2008. Biological treatment of indoor air for VOC removal: Potential and challenges. Biotechnology Advances 26(5): 398-410. doi:10.1016/j.biotechadv.2008.03.005.

Guo, Y.F., Ye, D.Q., Chen, K.F., He, J.C. & Chen, W.L. 2006. Toluene decomposition using a wire-plate dielectric barrier discharge reactor with manganese oxide catalyst in situ. Journal of Molecular Catalysis A: Chemical 245(1-2): 93- 100. doi:10.1016/j.molcata.2005.09.013.

Hu, B., Chen, C.H., Frueh, S.J., Jin, L., Joesten, R. & Suib, S.L. 2010. Removal of aqueous phenol by adsorption and oxidation with doped hydrophobic cryptomelane-type manganese oxide (K-OMS-2) nanofibers. The Journal of Physical Chemistry C 114(21): 9835-9844. doi:10.1021/ jp100819a.

Hu, S., He, K.H., Zeng, M.H., Zou, H.H. & Jiang, Y.M. 2008. Crystalline-state guest-exchange and gas-adsorption phenomenon for a ‘Soft’ supramolecular porous framework stacking by a rigid linear coordination polymer. Inorganic Chemistry 47(12): 5218-5224. doi:10.1021/ic800050u.

Jothiramalingam, R. & Wang, M.K. 2007. Synthesis, characterization and photocatalytic activity of porous manganese oxide doped titania for toluene decomposition. Journal of Hazardous Materials 147(1-2): 562-569. doi:10.1016/j.jhazmat.2007.01.069.

Jothiramalingam, R., Viswanathan, B. & Varadarajan, T.K. 2006. Synthesis, characterization and catalytic oxidation activity of zirconium doped K-OMS-2 type manganese oxide materials. Journal of Molecular Catalysis A: Chemical 252(1-2): 49-55. doi:10.1016/j.molcata.2006.01.054.

Kwong, C.W., Chao, C.Y.H., Hui, K.S. & Wan, M.P. 2008. Removal of VOCs from indoor environment by ozonation over different porous materials. Atmospheric Environment 42 (10): 2300-2311. doi:10.1016/j.atmosenv.2007.12.030.

Luo, Y., Zou, L. & Hu, E. 2006. Enhanced degradation efficiency of toluene using titania/silica photocatalysis as a regeneration process. Environmental Technology 27(4): 359-366. doi:10.1080/09593332708618658.

Millanar, J.M., Yodsa-nga, A., de Luna, M.D. & Wantala, K. 2014. Thermal catalytic oxidation of toluene by K-OMS 2 synthesized via novel uncalcined route. In International Conference on Biological, Civil and Environmental Engineering (BCEE-2014), 29-31. Dubai (UAE). doi:http:// dx.doi.org/10.15242/IICBE.C0314166.

Momani, F.A. & Jarrah, N. 2009. Solar/UV-induced photocatalytic degradation of volatile toluene. Environmental Technology 30(10): 1085-1093. doi:10.1080/09593330903079213.

Quoc, A., Than, H., Huu, T.P., Van, T.L., Cormier, J.M. & Khacef, A. 2011. Application of atmospheric non thermal plasma-catalysis hybrid system for air pollution control: Toluene removal. Catalysis Today (Special issue dedicated to APAC 2010) 176(1): 474-477. doi:10.1016/j.cattod.2010.10.005.

Santos, V.P., Soares, O.S.G.P., Bakker, J.J.W., Pereira, M.F.R., Órfão, J.J.M., Gascon, J., Kapteijn, F. & Figueiredo, J.L. 2012. Structural and chemical disorder of cryptomelane promoted by alkali doping: Influence on catalytic properties. Journal of Catalysis 293(September): 165-174. doi:10.1016/j. jcat.2012.06.020.

Santos, V.P., Bastos, S.S.T., Pereira, M.F.R., Órfão, J.J.M. & Figueiredo, J.L. 2010. Stability of a cryptomelane catalyst in the oxidation of toluene. Catalysis Today 154(3-4): 308-311. doi:10.1016/j.cattod.2009.12.005.

Santos, V.P., Pereira, M.F.R., Órfão, J.J.M. & Figueiredo, J.L. 2009. Synthesis and characterization of manganese oxide catalysts for the total oxidation of ethyl acetate. Topics in Catalysis 52(5): 470-481. doi:10.1007/s11244-009-9187-3.

Schurz, F., Bauchert, J.M., Merker, T., Schleid, T., Hasse, H. & Gläser, R. 2009. Octahedral molecular sieves of the type K-OMS-2 with different particle sizes and morphologies: Impact on the catalytic properties in the aerobic partial oxidation of benzyl alcohol. Applied Catalysis A: General 355(1-2): 42-49. doi:10.1016/j.apcata.2008.11.014.

Suwannaruang, T., Rivera, K.K.P., Neramittagapong, A. & Wantala, K. 2015. Effects of hydrothermal temperature and time on uncalcined TiO2 synthesis for reactive red 120  photocatalytic degradation. Surface and Coatings Technology 271(June): 192-200. doi:10.1016/j.surfcoat.2014.12.041.

Wantala, K., Khamjumphol, C., Thananukool, N. & Neramittagapong, A. 2015. Degradation of reactive red 3 by heterogeneous fenton-like process over iron-containing RH-MCM-41 assisted by UV irradiation. Desalination and Water Treatment 54(3): 699-706. doi:10.1080/19443994.2 014.886295.

Yakout, S.M. & Daifullah, A.A.M. 2014. Adsorption of toluene, ethylbenzene and xylenes by activated carbon-impact of molecular oxygen. Desalination and Water Treatment 52(25- 27): 4977-4981. doi:10.1080/19443994.2013.821028.

Yang, K., Xue, F., Sun, Q., Yue, R. & Lin, D. 2013. Adsorption of volatile organic compounds by metal-organic frameworks MOF-177. Journal of Environmental Chemical Engineering 1(4): 713-718. doi:10.1016/j.jece.2013.07.005.

Yodsa-nga, A., Millanar, J.M., Neramittagapong, A., Khemthong, P. & Wantala, K. 2015. Effect of manganese oxidative species in as-synthesized K-OMS 2 on the oxidation of benzene. Surface and Coatings Technology 271: 217-224. doi:10.1016/j.surfcoat.2014.12.025.

Zalel, A., Yuval & Broday, D.M. 2008. Revealing source signatures in ambient BTEX concentrations. Environmental Pollution 156(2): 553-562. doi:10.1016/j.envpol.2008.01.016.

Zhao, K., Xiu, G., Xu, L., Zhang, D., Zhang, X.F. & Deshusses, M.A. 2011. Biological treatment of mixtures of toluene and n-hexane vapours in a hollow fibre membrane bioreactor. Environmental Technology 32(6): 617-623. doi:10.1080/09 593330.2010.507634.

 

*Corresponding author; email: kitirote@kku.ac.th

 

 

 

 

previous