Sains Malaysiana 46(2)(2017): 275–283
http://dx.doi.org/10.17576/jsm-2017-4602-12
Gas phase Catalytic Oxidation of VOCS using Hydrothermally Synthesized Nest-like
K-OMS 2 Catalyst
(Fasa Gas Pengoksidaan Mangkinan VOCS menggunakan Hidroterma Sintesis seperti Sarang Pemangkin K-OMS 2)
M.D. DE
LUNA1,. J.M. MILLANAR2., A. YODSA-NGA3
& K. WANTALA4*
1Department of Chemical Engineering,
University of the Philippines, 1101 Diliman,
Quezon City
Philippines
2Environmental Engineering Graduate
Program, University of the Philippines, 1101 Diliman,
Quezon City, Philippines
3Chemical Kinetics and Applied Catalysis
Laboratory, Faculty of Engineering, Khon
Kaen University
40000 Khon
Kaen, Thailand
4Department of Chemical Engineering,
Faculty of Engineering, Khon Kaen University, 40000 Khon Kaen, Thailand
5Research Center for Environmental
and Hazardous Substance Management (EHSM), Faculty of Engineering,
Khon Kaen University, Khon Kaen 40002, Thailand
Received: 12 November 2015/Accepted: 14
June 2016
ABSTRACT
Toluene and benzene are hazardous
air pollutants commonly found in the atmosphere at relatively high
concentrations. Due to this, a need to remove these pollutants became
a necessity. In this study, octahedral molecular sieve type manganese
oxide (K-OMS
2) prepared by hydrothermal method was utilized to
decompose toluene and benzene. X-ray diffraction (XRD), scanning electron microscopy
(SEM), Brunauer-Emmet-Teller (BET), X-ray absorption near
edge structure (XANES) analysis were used to investigate the crystallinity,
morphology, surface area and oxidation state of K-OMS 2, respectively.
It was confirmed that K-OMS
2 was successfully produced from hydrothermal method.
Central composite design (CCD) was used to investigate the main
and interaction effects of gas hourly space velocity (GHSV)
and reaction temperature on the thermal catalytic oxidation of benzene
and toluene. Both factors were found to have significant main and
interaction effects on toluene oxidation. However, only the main
effects of the factors were significant for benzene. This result
was due to the difference in the stability of the structures of
the two VOCs. The K-OMS 2
obtained has excellent efficiency on toluene and benzene removal.
Toluene was completely decomposed at a temperature as low as 250°C
while benzene decomposition reached around 98% at 292.4°C.
Keywords: Benzene; central
composite design; manganese oxide; octahedral molecular sieve; toluene
ABSTRAK
Toluena dan benzena
adalah pencemar udara merbahaya yang biasa ditemui di dalam atmosfera pada kepekatan yang agak tinggi. Oleh kerana ini, keperluan
untuk menyingkirkan
bahan cemar ini
menjadi suatu
keperluan. Dalam kajian ini, oktahedron ayak molekul jenis mangan
oksida (K-OMS 2) disediakan
melalui kaedah
hidroterma digunakan untuk menghuraikan toluena dan benzena.
Pembelauan sinar-x
(XRD),
mikroskop elektron
imbasan (SEM) dan
analisis Brunauer-Emmet-Teller
(BET)
digunakan untuk
mengkaji habluran, morfologi dan kawasan
permukaan seluas
K-OMS
2. Telah disahkan bahawa
K-OMS
2 berjaya dihasilkan
daripada kaedah
hidroterma. Pusat reka bentuk komposit
(CCD)
telah digunakan
untuk mengkaji kesan utama dan
interaksi halaju
ruang gas tiap jam (GHSV)
serta suhu tindak balas atas
pengoksidaan haba
mangkin toluena dan benzena. Kedua-dua faktor
didapati mendatangkan
kesan utama dan
interaksi yang ketara
pada toluena pengoksidaan.
Walau
bagaimanapun, hanya kesan utama faktor
adalah penting
bagi benzena. Keputusan ini adalah disebabkan
oleh perbezaan
dalam kestabilan struktur kedua-dua VOC.
K-OMS
2 yang diperoleh mempunyai
kecekapan cemerlang
ke atas penyingkiran
toluena dan
benzena. Toluena telah dihuraikan sepenuhnya pada suhu serendah 250°C manakala penguraian benzena mencapai tahap 98% pada 292.4°C.
Kata kunci: Benzena;
mangan oksida;
pusat reka bentuk
komposit; oktahedron
ayak molekul; toluene
REFERENCES
Areerob, T.,
Chiarakorn, S. & Grisdanurak,
N. 2015. Enhancement of gaseous BTEX adsorption on RH-MCM-41
by chlorosilanes. Sains Malaysiana 44(3):
429-439.
Atribak, I.,
Bueno-López, A., García-García,
A., Navarro, P., Frías, D. & Montes,
M. 2010. Catalytic activity for soot combustion of birnessite
and cryptomelane. Applied Catalysis
B: Environmental 93(3-4): 267-273. doi:10.1016/j.
apcatb.2009.09.038.
Azalim, S.,
Brahmi, R., Agunaou, M., Beaurain,
A., Giraudon, J.M. & Lamonier,
J.F. 2013. Washcoating of cordierite honeycomb with
Ce–Zr–Mn mixed
oxides for VOC catalytic oxidation. Chemical Engineering Journal
223(May): 536- 546. doi:10.1016/j.cej.2013.03.017.
Deng, Y.Q., Zhang, T., Au, C.T. & Yin, S.F. 2014. Oxidation of p-chlorotoluene to p-chlorobenzaldehyde over manganese-based octahedral molecular
sieves of different morphologies. Catalysis Communications
43(January): 126-130. doi:10.1016/j.catcom.2013.09.026.
Doucet, N.,
Bocquillon, F., Zahraa,
O. & Bouchy, M. 2006. Kinetics of photocatalytic VOCs abatement in a standardized reactor.
Chemosphere 65(7): 1188-1196. doi:10.1016/j.
chemosphere.2006.03.061.
Durmusoglu, E.,
Taspinar, F. & Karademir,
A. 2010. Health risk assessment of BTEX emissions in the
landfill environment. Journal of Hazardous Materials 176(1-3):
870-877. doi:10.1016/j.jhazmat.2009.11.117.
Genuino, H.C., Dharmarathna,
S., Njagi, E.C., Mei, M.C. & Suib,
S.L. 2012. Gas-phase total oxidation of benzene,
toluene, ethylbenzene, and xylenes using shape-selective manganese
oxide and copper manganese oxide catalysts. The Journal
of Physical Chemistry C 116(22): 12066-12078. doi:10.1021/
jp301342f.
Guieysse, B., Hort, C.,
Platel, V., Munoz, R., Ondarts,
M. & Revah, S. 2008. Biological treatment
of indoor air for VOC removal: Potential and challenges. Biotechnology
Advances 26(5): 398-410. doi:10.1016/j.biotechadv.2008.03.005.
Guo, Y.F., Ye, D.Q., Chen,
K.F., He, J.C. & Chen, W.L. 2006. Toluene decomposition using a wire-plate dielectric barrier discharge
reactor with manganese oxide catalyst in situ. Journal
of Molecular Catalysis A: Chemical 245(1-2): 93- 100. doi:10.1016/j.molcata.2005.09.013.
Hu, B., Chen, C.H., Frueh, S.J., Jin, L., Joesten, R. & Suib, S.L. 2010. Removal of aqueous phenol
by adsorption and oxidation with doped hydrophobic cryptomelane-type
manganese oxide (K-OMS-2) nanofibers. The Journal of Physical
Chemistry C 114(21): 9835-9844. doi:10.1021/
jp100819a.
Hu,
S., He, K.H., Zeng, M.H., Zou, H.H. &
Jiang, Y.M. 2008. Crystalline-state guest-exchange
and gas-adsorption phenomenon for a ‘Soft’ supramolecular porous
framework stacking by a rigid linear coordination polymer.
Inorganic Chemistry 47(12): 5218-5224. doi:10.1021/ic800050u.
Jothiramalingam, R.
& Wang, M.K. 2007. Synthesis, characterization and photocatalytic
activity of porous manganese oxide doped titania for toluene decomposition. Journal of Hazardous
Materials 147(1-2): 562-569. doi:10.1016/j.jhazmat.2007.01.069.
Jothiramalingam, R.,
Viswanathan, B. & Varadarajan, T.K.
2006. Synthesis,
characterization and catalytic oxidation activity of zirconium doped
K-OMS-2 type manganese oxide materials. Journal of Molecular
Catalysis A: Chemical 252(1-2): 49-55. doi:10.1016/j.molcata.2006.01.054.
Kwong, C.W.,
Chao, C.Y.H., Hui, K.S. & Wan, M.P. 2008. Removal of VOCs from indoor environment by ozonation
over different porous materials. Atmospheric Environment
42 (10): 2300-2311. doi:10.1016/j.atmosenv.2007.12.030.
Luo, Y., Zou, L. & Hu, E. 2006. Enhanced degradation efficiency of toluene using titania/silica photocatalysis as
a regeneration process. Environmental Technology 27(4):
359-366. doi:10.1080/09593332708618658.
Millanar, J.M.,
Yodsa-nga, A., de Luna, M.D. & Wantala, K. 2014. Thermal catalytic oxidation
of toluene by K-OMS 2 synthesized via novel uncalcined
route. In International Conference on Biological, Civil and Environmental
Engineering (BCEE-2014), 29-31. Dubai (UAE). doi:http:// dx.doi.org/10.15242/IICBE.C0314166.
Momani, F.A. & Jarrah, N. 2009. Solar/UV-induced photocatalytic degradation of volatile toluene.
Environmental Technology 30(10): 1085-1093. doi:10.1080/09593330903079213.
Quoc,
A., Than, H., Huu, T.P., Van, T.L., Cormier,
J.M. & Khacef, A. 2011. Application
of atmospheric non thermal plasma-catalysis hybrid system for air
pollution control: Toluene removal. Catalysis Today (Special
issue dedicated to APAC 2010) 176(1): 474-477. doi:10.1016/j.cattod.2010.10.005.
Santos, V.P., Soares, O.S.G.P., Bakker,
J.J.W., Pereira, M.F.R., Órfão, J.J.M.,
Gascon, J., Kapteijn, F. & Figueiredo, J.L. 2012. Structural and chemical
disorder of cryptomelane promoted by alkali
doping: Influence on catalytic properties. Journal of Catalysis
293(September): 165-174. doi:10.1016/j.
jcat.2012.06.020.
Santos, V.P., Bastos, S.S.T., Pereira, M.F.R., Órfão,
J.J.M. & Figueiredo, J.L. 2010. Stability of a cryptomelane catalyst in
the oxidation of toluene. Catalysis Today 154(3-4):
308-311. doi:10.1016/j.cattod.2009.12.005.
Santos, V.P., Pereira, M.F.R., Órfão, J.J.M.
& Figueiredo, J.L. 2009. Synthesis and characterization of manganese oxide catalysts for the
total oxidation of ethyl acetate. Topics in Catalysis
52(5): 470-481. doi:10.1007/s11244-009-9187-3.
Schurz, F., Bauchert, J.M., Merker, T., Schleid, T., Hasse, H. & Gläser, R. 2009. Octahedral
molecular sieves of the type K-OMS-2 with different particle sizes
and morphologies: Impact on the catalytic properties in the aerobic
partial oxidation of benzyl alcohol. Applied Catalysis A: General
355(1-2): 42-49. doi:10.1016/j.apcata.2008.11.014.
Suwannaruang,
T., Rivera, K.K.P., Neramittagapong, A.
& Wantala, K. 2015. Effects of hydrothermal temperature and
time on uncalcined TiO2 synthesis for
reactive red 120 photocatalytic degradation.
Surface and Coatings Technology 271(June): 192-200. doi:10.1016/j.surfcoat.2014.12.041.
Wantala, K., Khamjumphol, C., Thananukool, N.
& Neramittagapong, A. 2015. Degradation of
reactive red 3 by heterogeneous fenton-like
process over iron-containing RH-MCM-41 assisted by UV irradiation.
Desalination and Water Treatment 54(3): 699-706. doi:10.1080/19443994.2
014.886295.
Yakout, S.M. &
Daifullah, A.A.M. 2014. Adsorption
of toluene, ethylbenzene and xylenes by activated carbon-impact
of molecular oxygen. Desalination and Water Treatment
52(25- 27): 4977-4981. doi:10.1080/19443994.2013.821028.
Yang, K., Xue, F., Sun, Q., Yue, R. & Lin, D. 2013. Adsorption of
volatile organic compounds by metal-organic frameworks MOF-177.
Journal of Environmental Chemical Engineering 1(4): 713-718.
doi:10.1016/j.jece.2013.07.005.
Yodsa-nga, A., Millanar, J.M., Neramittagapong,
A., Khemthong, P. & Wantala,
K. 2015.
Effect of manganese oxidative species in as-synthesized K-OMS 2 on
the oxidation of benzene. Surface and Coatings Technology
271: 217-224. doi:10.1016/j.surfcoat.2014.12.025.
Zalel, A., Yuval &
Broday, D.M. 2008. Revealing source
signatures in ambient BTEX concentrations. Environmental
Pollution 156(2): 553-562. doi:10.1016/j.envpol.2008.01.016.
Zhao, K., Xiu, G., Xu, L., Zhang, D., Zhang, X.F. & Deshusses, M.A. 2011. Biological treatment of mixtures
of toluene and n-hexane vapours in a hollow
fibre membrane bioreactor. Environmental Technology
32(6): 617-623. doi:10.1080/09 593330.2010.507634.
*Corresponding author;
email: kitirote@kku.ac.th
|