Sains Malaysiana 46(2)(2017): 295–302
http://dx.doi.org/10.17576/jsm-2017-4602-14
Electrochemical
Corrosion Behaviour of Pb-free SAC 105 and
SAC 305 Solder Alloys: A Comparative Study
(Perilaku
Kakisan Elektrokimia Aloi Pateri Pb-free SAC 105 dan SAC 305: Suatu Kajian
Perbandingan)
M. FAYEKA, A.S.M.A. HASEEB
& M.A. FAZAL*
Department of Mechanical Engineering, University of Malaya, 50603
Kuala Lumpur, Federal Territory, Malaysia
Received: 17 September 2015/Accepted: 24 May 2016
ABSTRACT
Sn-Ag based solder alloy seems to be a promising lead-free solder
for the application on electronic assembly. The corrosion behavior of different
lead free solder alloys such as Sn-3.0Ag, Sn-1.0Ag-0.5Cu and Sn-3.0Ag-0.5Cu was
investigated in 3.5% NaCl solution by potentiodynamic polarization and
electrochemical impedance spectroscopy. Scanning electron microscopy (SEM),
energy dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD)
were used to characterize the samples after the tests. The results showed that
the addition of 0.5 wt. % copper with Sn-3.0 Ag solder alloy led to a better
corrosion resistance while lowering of Ag content from 3.0 to 1.0 wt. %
decreased the resistance. Sn-3.0Ag-0.5Cu exhibits a better corrosion resistance
in terms of increased charge transfer resistance and impedance values as well
as the lowest capacitance. These characteristics signify its suitability for
the application in electronic packaging.
Keywords: Corrosion; EIS; Pb-free solders;
potentiodynamic polarization
ABSTRAK
Aloi pateri berasaskan Sn-Ag berpotensi menjadi
pateri bebas-Pb untuk diaplikasikan sebagai pemasangan elektronik. Tindak balas kakisan aloi pateri bebas Pb yang
berbeza seperti Sn-3.0Ag, Sn-1.0Ag-0.5Cu dan Sn-3.0Ag-0.5Cu dikaji dalam
larutan 3.5% NaCl menggunakan upaya dinamik pengutuban dan spektroskopi
impedans elektrokimia. Mikroskop imbasan elektron (SEM),
spektroskopi sinar-X tenaga terserak (EDX) dan pembelauan sinar-X (XRD)
telah digunakan untuk mencirikan sampel selepas ujian. Hasil
kajian menunjukkan bahawa penambahan 0.5 %. bt tembaga ke dalam aloi pateri Sn-3.0Ag menghasilkan rintangan kakisan yang lebih
baik. Manakala mengurangkan kandungan Ag daripada 3.0 kepada
1.0 %. bt, menurunkan rintangan. Sn-3.0Ag-0.5Cu
menunjukkan kakisan yang lebih baik daripada segi peningkatan pemindahan cas rintangan dan nilai impedansi. Ia juga
mempunyai kapasitans yang paling rendah. Ciri-ciri ini
mencerminkan kesesuaian bahan ini dalam aplikasi pembungkusan elektronik.
Kata kunci: EIS;
kakisan; pateri bebas Pb; upaya dinamik pengutuban
REFERENCES
Abd El Rehim, Sayed S, Ayman M Zaky
& Noble F Mohamed. 2006.
Electrochemical behaviour of a tin electrode in tartaric acid solutions. Journal
of Alloys and Compounds 424(1): 88-92.
Asaduzzaman, M.D., Chand Mustafa Mohammad & Islam
Mayeedul. 2011. Effects of concentration of sodium chloride solution on the
pitting corrosion behavior of AISI 304L austenitic stainless steel. Chemical
Industry and Chemical Engineering Quarterly 17(4): 477-483.
Billah, Md Muktadir, Kazi Mohammad Shorowordi & Ahmed
Sharif. 2014. Effect of micron size Ni particle addition in Sn-8Zn-3Bi
lead-free solder alloy on the microstructure, thermal and mechanical
properties. Journal of Alloys and Compounds 585(0): 32-39.
Brett, C.M.A. & Trandafir, F. 2004. The corrosion of dental amalgam in artificial salivas: An
electrochemical impedance study. Journal of Electroanalytical Chemistry 572(2):
347- 354.
Díaz-Ballote, L., López-Sansores, J.F.,
Maldonado-López, L. & Garfias-Mesias, L.F. 2009. Corrosion behavior of aluminum exposed to a biodiesel. Electrochemistry
Communications 11(1): 41-44.
El-Daly, A.A., El-Taher, A.M. & Gouda, S. 2015.
Development of new multicomponent Sn-Ag-Cu-Bi lead-free solders for low-cost
commercial electronic assembly. Journal of Alloys and Compounds 627(0):
268-275.
El-Daly, A.A. & Hammad, A.E. 2010. Effects of small addition of Ag and/or Cu on the
microstructure and properties of Sn- 9Zn lead-free solders. Materials
Science and Engineering: A 527(20): 5212-5219.
Fawzy, A., Fayek, S.A., Sobhy, M.,
Nassr, E., Mousa, M.M. & Saad, G. 2014. Tensile creep characteristics of Sn-3.5 Ag- 0.5 Cu (SAC355)
solder reinforced with nano-metric ZnO particles. Materials Science and
Engineering: A 603: 1-10.
Freitas, E.S., Osório, W.R., Spinelli, J.E. & Garcia, A.
2014. Mechanical and corrosion resistances of a Sn-0.7 wt. % Cu lead-free
solder alloy. Microelectronics Reliability 54(6): 1392-1400.
Gao, Y-F., Cheng, C-Q., Zhao, J.,
Wang, L-H. & Li, X-G. 2012. Electrochemical corrosion of Sn-0.75 Cu solder joints in NaCl solution. Transactions of
Nonferrous Metals Society of China 22(4): 977-982.
Kim, K.S., Huh, S.H. & Suganuma, K.
2003. Effects of intermetallic compounds on
properties of Sn-Ag-Cu lead-free soldered joints. Journal of Alloys and
Compounds 352(1): 226-236.
Li, X., Zu, F., Gao, W., Cui, X., Wang,
L. & Ding, G. 2012. Effects of the melt
state on the microstructure of a Sn-3.5%Ag solder at different cooling rates. Applied
Surface Science 258(15): 5677-5682.
Liu, M., Yang, W., Ma, Y., Tang, C., Tang, H. & Zhan, Y.
2015. The electrochemical corrosion behavior of Pb-free Sn-8.5 Zn- XCr solders
in 3.5 wt. % NaCl solution. Materials Chemistry and Physics 168: 27-34.
Mohanty, U.S. & Lin, K-L. 2013. Corrosion behavior of
Pb-free Sn-1Ag-0.5Cu-XNi solder alloys in 3.5% NaCl solution. Journal of
Electronic Materials 42(4): 628-638.
Mohanty, U.S. & Lin, K-L. 2007a. Electrochemical corrosion study of Sn-XAg-0.5 Cu alloys in
3.5% NaCl solution. Journal of Materials Research 22(09): 2573-2581.
Mohanty, U.S. & Lin, K-L. 2007b. The polarization characteristics of Pb-free Sn-8.5 Zn-X Ag-0.1
Al–0.05 Ga alloy in 3.5% NaCl solution. Corrosion Science 49(7):
2815-2831.
Mohanty, U.S. & Lin, K-L. 2006. Effect of Al on the
electrochemical corrosion behaviour of Pb free Sn-8.5 Zn- 0.5 Ag-XAl-0.5 Ga
solder in 3.5% NaCl solution. Applied Surface Science 252(16):
5907-5916.
Mohanty, U.S. & Lin, K-L. 2005. Electrochemical
corrosion behaviour of lead-free Sn-8.5 Zn-X Ag-0.1 Al-0.5 Ga solder in
3.5% NaCl solution. Materials Science and Engineering: A 406(1): 34-42.
Mohran, HossniaS, Abdel-Rahman El-Sayed & HanyM Abd
El-Lateef. 2009. Anodic behavior of tin, indium, and tin– indium alloys
in oxalic acid solution. Journal of Solid State Electrochemistry 13(8):
1279-1290.
Nazeri, Muhammad Firdaus Mohd &
Ahmad Azmin Mohamad. 2016. Corrosion
resistance of ternary Sn-9Zn-xIn solder joint in alkaline solution. Journal
of Alloys and Compounds 661: 516-525.
Nazeri, Muhammad Firdaus Mohd &
Ahmad Azmin Mohamad. 2014. Corrosion
measurement of Sn-Zn lead-free solders in 6M KOH solution. Measurement 47(0):
820-826.
Okafor, P.C., Liu, X. & Zheng, Y.G. 2009. Corrosion
inhibition of mild steel by ethylamino imidazoline derivative in CO2-
saturated solution. Corrosion Science 51(4): 761-768.
Osório, W.R., Garcia, L.R., Peixoto, L.C. & Garcia, A.
2011. Electrochemical behavior of a lead-free SnAg solder alloy affected by the
microstructure array. Materials & Design 32(10): 4763-4772.
Osório, W.R., Cremasco, A., Andrade,
P.N., Garcia, A. & Caram, R. 2010. Electrochemical behavior of centrifuged cast and heat treated Ti-Cu alloys for
medical applications. Electrochimica Acta 55(3): 759-770.
Raja, Pandian Bothi, Ahmad Kaleem
Qureshi, Afidah Abdul Rahim, Hasnah Osman & Khalijah Awang. 2013. Neolamarckia cadamba alkaloids as eco-friendly
corrosion inhibitors for mild steel in 1M HCl media. Corrosion Science 69:
292-301.
Rosalbino, F., Angelini, E., Zanicchi,
G., Carlini, R. & Marazza, R. 2009. Electrochemical corrosion study of Sn-3Ag-3Cu solder alloy in NaCl solution. Electrochimica
Acta 54(28): 7231-7235.
Rosalbino, F., Angelini, E., Zanicchi,
G. & Marazza, R. 2008. Corrosion behaviour assessment of lead-free Sn-Ag-M (M= In, Bi, Cu) solder
alloys. Materials Chemistry and Physics 109(2): 386-391.
Hirokazu Tanaka, Fumitaka Ueta, Sachio Yoshihara &
Takashi Shirakashi. 2001. Effects of reflow processing and flux residue on
ionic migration of lead-free solder plating using the quartz crystal
microbalance method. Materials Transactions 42(9): 2003-2007.
Wang, M., Wang, J., Feng, H. & Ke,
W. 2012. Effect of Ag3Sn
intermetallic compounds on corrosion of Sn-3.0 Ag-0.5 Cu solder under
high-temperature and high-humidity condition. Corrosion Science 63:
20-28.
Witte, F., Fischer, J., Nellesen, J., Crostack, H-A., Kaese, V., Pisch, A., Beckmann, F. & Windhagen, H.
2006. In vitro and in vivo corrosion
measurements of magnesium alloys. Biomaterials 27(7): 1013-1018.
Wu, C.M.L., Huang, M.L., Lai, J.K.L. & Chan, Y.C. 2000.
Developing a lead-free solder alloy Sn-Bi-Ag-Cu by mechanical alloying. Journal
of Electronic Materials 29(8): 1015-1020.
Yeh, M.S. 2003. Effects of indium on the
mechanical properties of ternary Sn-In-Ag solders. Metallurgical and
Materials Transactions A 34(2): 361-365.
Yuan, S.J., Choong, A.M.F. &
Pehkonen, S.O. 2007. The influence of the
marine aerobic Pseudomonas strain on the corrosion of 70/30 Cu-Ni alloy. Corrosion Science 49(12): 4352-4385.
*Corresponding
author; email: fazal@um.edu.my
|