Sains Malaysiana 46(2)(2017): 303–308
http://dx.doi.org/10.17576/jsm-2017-4602-15
6
MV Photon Beam Induced UV/VIS Absorption of Hema Polymer Gel
(Alur
Foton 6 MV Teraruh Penyerapan UV/VIS Gel
Polimer HEMA)
SITI
ATIQAH
ISHAK*,
ISKANDAR SHAHRIM , SITI,
K.A.R.
&
AZHAR
A.
ALRAHMAN
School of Physics, Universiti Sains Malaysia, 11800
Pulau Pinang, Malaysia
Received: 22 August 2014/Accepted: 24 May 2016
ABSTRACT
The aim of this study was to evaluate properties of normoxic
polymer gel 2-Hydroxyethyl methacrylate monomer (HEMAG)
as a point dosimeter by using optical properties evaluation techniques. HEMAG were prepared from seven different radiation dose within five
different depths of HEMAG dosimeters. These HEMAG dosimeters were irradiated by linear accelerator with 6 MV photon
beams. The absorption spectra were measured by using a UV-visible
spectrophotometer in the wavelength range from 300 to 800 nm. Then, the data
was analysed to determine the optical energy band gap (Eg)
and Urbach’s energy (ΔE). The result showed that Eg and ΔE were
dependent on radiation dose and percentage of depth dose (PDD).
In additional, Eg with indirect transition of HEMAG decreased as radiation dose increased and increased with
traversing of depth. ΔE of HEMAG increased as the dose
increased and decreased with traversing depth of monomer. There was a shift in
the Eg values towards lower energy as the dose increased
and led to a shift of the ΔE value towards the higher energy with
increasing dose. This observation supported the increase of structured disorder
of the polymer with increasing radiation dose, which resulted in the lower
energy transitions that was feasible and reduced the values of Eg.
In conclusion, HEMAG has a potential to be used as a
dosimeter at low radiation dose in the clinical radiotherapy.
Keywords: HEMAG; optical properties; optical
band gap; polymer gel; Urbach energy; UV-vis spectrophotometer
ABSTRAK
Tujuan kajian ini ialah untuk menilai sifat
poli-hidroksimetilakrilit gel (HEMAG) sebagai dosimeter titik
dengan menggunakan teknik penilaian sifat optik. HEMAG disediakan daripada tujuh
dos sinaran berbeza dilingkungi lima kedalaman
dosimeter HEMAG yang berbeza. Dosimeter HEMAG dipersinarkan menggunakan pemecut linear dengan alur foton 6 MV. Spektra serapan diukur dengan menggunakan spektrofotometer UV-nampak
pada julat panjang gelombang dari 300 hingga 800 nm. Kemudian,
data dianalisis untuk menentukan jurang jalur tenaga optik (Eg) dan tenaga Urbach (ΔE). Keputusan menunjukkan Eg dan ΔE bergantung
kepada dos sinaran dan peratus kedalaman dos (PDD). Sebagai tambahan, Eg dengan
transisi tak langsung HEMAG berkurang apabila dos sinaran
meningkat dan meningkat dengan penyusuran kedalaman. ΔE HEMAG meningkat apabila dos meingkat dan menurun dengan penyusuran
kedalaman monomer. Terdapat anjakan di dalam nilai Eg terhadap
tenaga rendah apabila dos meningkat dan menjurus ke anjakan nilai ΔE
terhadap tenaga tinggi dengan penigkatan dos. Pemerhatian ini
menyokong peningkatan ketaktertiban berstruktur polimer dengan peningkatan dos,
yang dihasilkan di dalam tenaga transisi rendah yang tersaur dan mengurangkan
nilai-nilai Eg. Secara kesimpulan, HEMAG mempunyai potensi untuk
digunakan sebagai dosimeter pada dos sinaran rendah di dalam radioterapi
klinikal.
Kata kunci: Gel polimer; HEMAG; jalur tenaga optik; sifat optik;
spektrofotometer UV-vis; tenaga Urbach
REFERENCES
Chahal, R.P. 2011. Effect of ultraviolet
irradiation on the optical and structural characteristics of in-situ prepared
PVP-Ag nanocomposites. Digest Journal of Nanomaterials and Biostructures 6(1):
299-306.
Cho, S.J., Shin, D., Huh, H.D., Lee, S.H., Lim,
S.W., Yun, H.G., Yun, S.M., Shin, D.O., Yang, D.S., Park, Y.J., Kim, C.Y. &
Lee, S. 2007. Development of a novel normoxic polymer gel
dosimeter (TENOMAG). Journal of the Korean Physical Society 51(5):
1798-1804.
Elias Saion, Susilawati, Doyan, A., Zainal
Abidin, S., Azmi, Z., Zulkfli, A., Mohd Zaki, A.R., Dahlan, K.Z.H. & Karni,
T. 2005. Changes in the optical band gap and absorption edge of
gamma-irradiated polymer blends. Journal of Applied Sciences 5(10):
1825-1829.
Hawkins, A.R. & Holger, S. 2010. Handbook of Optofluidics. New York: Taylor &
Francis Group. doi:10.1038/ncomms1662.
Maryanski, M.J., Zastavker, Y.Z. & Gore,
J.C. 1996. Radiation dose distributions in three dimensions from tomographic
optical density scanning of polymer gels: II. Optical properties of the BANG
polymer gel radiation dose distributions in three dimensions from tomographic
optical density scanning of poly. Physic in Medicine and Biology 41:
2705-2717.
Podgorsak, E. 2005. Radiation Oncology Physics: A Handbook for
Teachers and Students. International Atomic Energy Agency.
doi:10.1038/sj.bjc.6604224.
Susilawati & Doyan, A.
2009. Dose response and optical
properties of dyed poly vinyl alcohol-trichloroacetic acid polymeric blends
irradiated with gamma-rays. American Journal of Applied Sciences 6(12):
2071-2077.
*Corresponding author; email: sitiatiqah.ishak@gmail.com
|