Sains Malaysiana 46(2)(2017): 309–315
http://dx.doi.org/10.17576/jsm-2017-4602-16
Dominant Influence of the Terminal Molecule of
PNIPA Chain on Wettability
(Pengaruh
Dominan Molekul Terminal Raintaian PNIPA ke atas
Kebolehbasahan)
NURUL HUDA1*, MOHD. RASHID2 & NAHIDA SULTANA1
1Center
for Advanced Research in Sciences, University of Dhaka, Dhaka 1000,
Bangladesh
2Malaysia-Japan
International Institute of Technology, 54100 UTM Kuala Lumpur,
Federal
Territory, Malaysia
Received:
6 April 2016/Accepted: 8 June 2016
ABSTRACT
Poly(N-isopropylacrylamide) (PNIPA)
brushes on silicon substrate was constructed and molecular weight and
polydispersity index was controlled precisely. Molecular behavior of the PNIPA grafted surface was observed by using captive bubble contact
angle method. A very interesting phenomenon of high density PNIPA grafted
membrane with a chloride terminal molecule was observed. The contact angle of
high density PNIPA-Cl increased sharply while the temperature rises
above 32oC. But in the case of PNIPA gel
surface the contact angle result decreases sharply while the temperature
reaches above lower critical solution temperature (LCST).
In order to identify the reason behind this abnormal behavior of PNIPA-Cl
grafted membrane, the terminal chloride molecule of PNIPA chain
was modified to less electronegative azide (-N3) as
well as carboxylic acid (-COOH). Finally it was found that terminal molecule of
high density PNIPA grafted membrane has a great influences on the
wettability change of PNIPA membrane in water by changing
the temperature.
Keywords: ATRP; grafted membrane; monomer; PNIPA
ABSTRAK
Berus poli(N-isopropilakrilamida) (PNIPA)
pada substrat silikon telah dibina dan berat molekul serta indeks kepoliserakan
telah dikawal dengan tepat. Tingkah laku molekul permukaan
cantuman PNIPA telah diperhatikan dengan menggunakan kaedah sudut
sentuhan tangkapan gelembung. Suatu fenomena yang
sangat menarik untuk membran cantuman PNIPA ketumpatan tinggi dengan
klorida terminal molekul diperhatikan. Sudut sentuh PNIPA-Cl
ketumpatan tinggi meningkat dengan ketara manakala suhu meningkat melebihi 32oC. Tetapi dalam kes gel permukaan PNIPA, keputusan sudut sentuh
berkurangan secara mendadak semasa suhu mencapai tahap di atas suhu kritikal
larutan (LCST). Untuk mengenal pasti sebab di
sebalik tingkah laku tidak normal daripada PNIPA-Cl
membran cantuman ini, molekul klorida terminal rantaian PNIPA diubah
suai untuk mengurangkan azida elektronegatif (-N3)
serta asid karbosilik (-COOH). Kesimpulannya, didapati bahawa molekul
terminal ketumpatan tinggi PNIPA membran cantuman mempunyai
pengaruh yang besar pada perubahan kebolehbasahan membran PNIPA dalam
air dengan mengubah suhunya.
Kata kunci: ATRP;
grafted membran; monomer; PNIPA
REFERENCES
Abraham, M. 2004. Adhesion and wetting in an aqueous environment:
Theoretical assessment of sensivity to the solid surface energy. Langmuir 20: 1317-1320.
Atsushi, S. & Yasuhiro, K. 1999. Static contact angle of sessile air bubble on polymer gel surface in
water. Jpn. J. Appl. Phys. 38: 2910-2916.
Cassie, A.B.D. & Baxter, S. 1944. Wettability of porus surface. Trans Faraday Soc. 40:
546-551.
Chen, G. & Hoffman, A.S. 1995. Graft copolymers that exhibit
temperature-induced phase transitions over a wide range of pH. Nature
(London) 373: 49-52.
Grundke, K., Pöschel, K., Synytska, A., Frenzel, R.,
Drechsler, A., Nitschke, M., Cordeiro, A.L., Uhlmann, P. & Welzel, P.B.
2015. Experimental studies of contact angle hysteresis phenomena
on polymer surfaces - toward the understanding and control of wettability for
different applications. Advances in Colloid and Interface Science 222:
350-376. DOI: doi: 10.1016/j.cis.2014.10.012.
Hiromasa,
S., Huda, M.N., Hisashi, H., Kazushige, K.,Takahiro,
S. & Yukikazu, T. 2010. Precise synthesis and physicochemical properties of
high-density polymer brushes designed with poly(N-isopropylacrylamide). Macromolecules 43: 9945- 9956.
Huda, M. & Kabir, A. 2013. Stimuli responsive morphological changes of Pnipa polymer brushes
synthesized on silicon substrate. Journal of
Molecular and Engineering Materials 2: 1-9.
Irem, E., Helmut, S. & Levent, D.A. 2011. Effect of structural isomerism and polymer end group on the
pH-stability of hydrogen-bonded multilayers. Journal of Colloid and
Interface Science 361(2): 477-482.
Jin, L., Yin, Z. & Zheng, L. 2014. Thermo-responsive brush copolymers with structure-tunable LCST and
switchable surface wettability. Polymer 55:
6552-6560.
Kari,
J.M. & Yoram, C. 2014. Wettability of terminally anchored polymer brush
layers on a polyamide surface. Colloid and Interface Science 436:
286-295.
Lamson, M., Maciej, K., Hangjun, D., Mingjiang, Z. &
Matyjaszewski, K. 2016. Synthesis of
well-defined polyacrylonitrile by ICAR ATRP with low concentrations of
catalyst. Polymer Chem. 54(13): 1961-1968. DOI: 10.1002/
pola.28055.
Manias, E., Rackaiti, M., Foley, T., Efimenko, K. &
Genzer, J. 2005. Combinatorial polymer brushes formed
by temperature responsive polymers with tunable onset of response. Polymer
Preprints 46(2): 11-12.
Pawel,
K., Thomas, G.R., Matyjaszewski, K. & Armando, G. 2016. Relation
between overall rate of ATRP and rates of activation of dormant species. Macromolecules 49(7): 2467- 2476. DOI: 10.1021/acs.macromol.6b00058.
Okano, T. 1993. Molecular design of
temperature-responsive polymers as intelligent materials. Adv. Polym. Sci. 110: 179-197.
Prokhorova, S.A., Kopytsev, A., Ramakrishnan, H.Z. &
Rühe, J. 2003. Can polymer brushes induce motion of
nano-objects? Nanotechnology 14: 1098-1103.
Shah, R.R., Merreceyes, D., Husemann, M., Rees, I., Abbott,
N.L., Hawker, C.J. & Hedrick, J.L. 2000. Using atom transfer radical polymerization to amplify monolayers of
initiators patterned by micro contact printing into polymer brushes for pattern
transfer. Macromolecules 33: 597-605.
Yamamoto, S., Ejaz, M., Tsujii, Y. & Fukuda, T. 2000. Surface interaction forces of well- defined, high-density polymer brushes
studied by atomic force microscopy. 2. Effect of graft density. Macromolecules 33(15): 5608-5612.
Wenzel,
R.N. 1936. Resistance of solid surfaces to wetting by water. Ind. Eng. Chem. 28: 988-994.
*Corresponding
author; email: write2shakil@gmail.com
|